Skip to main content
Log in

Fracture analysis and tensile properties of perfect and defective carbon nanotubes functionalized with carbene using molecular dynamics simulations

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the tensile properties and fracture analysis of functionalized carbon nanotubes (CNTs) with carbene are investigated employing the molecular dynamics simulations. Tensile parameters, i.e., Young’s modulus, ultimate stress, failure strain, and fracture progress, are determined, and the effects of different attachment types, distribution patterns, the weight percentage of functional groups as well as the presence of defect with various defect weights on the aforementioned values are explored. According to the results, the tensile parameters are highly sensitive to the attachment type of carbene. In general, functionalization reduces the value of tensile parameters, especially when the attachment of carbene to base CNT is perpendicular to the loading direction. Compared to the ultimate stress and the failure strain, Young’s modulus is shown to be less affected by functionalization. It is demonstrated that the presence of defect, regardless of functionalization type and distribution pattern, reduces the tensile parameters. This reduction is more pronounced in the case of ultimate stress. Moreover, it is found that the toughness of CNTs reduces by functionalization and the presence of defects. Finally, it is demonstrated that functionalization with carbene and the presence of defects does not have a noticeable effect on the fracture progress of CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Google Scholar 

  2. Ajori S, Ansari R, Sadeghi F (2018) Molecular dynamics study of gigahertz nanomechanical oscillators based on an ion inside a series of electrically charged carbon nanotubes. Eur J Mech A/Solids 69:45–54

    Google Scholar 

  3. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM et al (1999) Carbon nanotube actuators. Science 284(5418):1340–1344

    Google Scholar 

  4. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112

    Google Scholar 

  5. Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Google Scholar 

  6. Sadeghi F, Ajori S, Ansari R (2020) Continuum modeling of ion-selective membranes constructed from functionalized carbon nanotubes. Eur Phys J Plus 135(7):553

    Google Scholar 

  7. Jha R, Singh A, Sharma PK, Fuloria NK (2020) Smart carbon nanotubes for drug delivery system: a comprehensive study. J Drug Deliv Sci Technol 58:101811

    Google Scholar 

  8. Ajori S, Ansari R, Darvizeh M (2015) Vibration characteristics of single-and double-walled carbon nanotubes functionalized with amide and amine groups. Physica B 462:8–14

    Google Scholar 

  9. Striolo A, Chialvo AA, Gubbins KE, Cummings PT (2005) Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J Chem Phys 122(23):234712

    Google Scholar 

  10. Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem A Eur J 10(4):812–817

    Google Scholar 

  11. Georgakilas V, Voulgaris D, Vazquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 124(48):14318–14319

    Google Scholar 

  12. Gogotsi Y, Libera JA, Güvenç-Yazicioglu A, Megaridis CM (2001) In situ multiphase fluid experiments in hydrothermal carbon nanotubes. Appl Phys Lett 79(7):1021–1023

    MATH  Google Scholar 

  13. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194

    Google Scholar 

  14. Ajori S, Ansari R, Haghighi S (2019) Small strain effect on the mechanical vibration behavior of cross-linked functionalized carbon nanotubes with polyethylene: a molecular-dynamics study. EPL (Europhys Lett) 125(4):43001

    Google Scholar 

  15. Wang HJ, Xi XK, Kleinhammes A, Wu Y (2008) Temperature-induced hydrophobic–hydrophilic transition observed by water adsorption. Science 322(5898):80–83

    Google Scholar 

  16. Ansari R, Ajori S, Ameri A (2014) Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl. Chem Phys Lett 616:120–125

    Google Scholar 

  17. Anzar N, Hasan R, Tyagi M, Yadav N, Narang J (2020) Carbon nanotube—a review on synthesis, properties and plethora of applications in the field of biomedical science. Sens Int 1:100003

    Google Scholar 

  18. Polizu S, Savadogo O, Poulin P, Yahia LH (2006) Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol 6(7):1883–1904

    Google Scholar 

  19. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. BioMed Res Int 2013:578290. https://doi.org/10.1155/2013/578290

    Article  Google Scholar 

  20. Singleton JW, Misak HE, Mall S (2017) Relationships between tensile behavior, physical parameters and manufacturing parameters of carbon nanotube sheet. Mater Des 116:199–206

    Google Scholar 

  21. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761

    Google Scholar 

  22. Yang W, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):412001

    Google Scholar 

  23. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58(14):1460–1470

    Google Scholar 

  24. Figarol A, Pourchez J, Boudard D, Forest V, Tulliani JM, Lecompte JP et al (2014) Biological response to purification and acid functionalization of carbon nanotubes. J Nanopart Res 16(7):2507

    Google Scholar 

  25. Druchok M, Lukšič M (2019) Carboxylated carbon nanotubes can serve as pathways for molecules in sandwich-like two-phase organic-water systems. J Mol Liq 291:111287

    Google Scholar 

  26. Wolski P, Nieszporek K, Panczyk T (2017) Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism. Phys Chem Chem Phys 19(13):9300–9312

    Google Scholar 

  27. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366

    Google Scholar 

  28. Janas D, Czechowski N, Krajnik B, Mackowski S, Koziol KK (2013) Electroluminescence from carbon nanotube films resistively heated in air. Appl Phys Lett 102(18):181104

    Google Scholar 

  29. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640

    Google Scholar 

  30. Haghighi S, Ansari R, Ajori S (2020) A molecular dynamics study on the interfacial properties of carbene-functionalized graphene/polymer nanocomposites. Int J Mech Mater Des 16:387–400

    Google Scholar 

  31. Stando G, Łukawski D, Lisiecki F, Janas D (2019) Intrinsic hydrophilic character of carbon nanotube networks. Appl Surf Sci 463:227–233

    Google Scholar 

  32. Boroushak SH, Ajori S, Ansari R (2019) Characterization of the structural instability of BxCyNz heteronanotubes via molecular dynamics simulations. Mater Res Express 6(10):105096

    Google Scholar 

  33. Boroushak SH, Ansari R, Ajori S (2018) Molecular dynamics simulations of the thermal conductivity of cross-linked functionalized single-and double-walled carbon nanotubes with polyethylene chains. Diam Relat Mater 86:173–178

    Google Scholar 

  34. Pashmforoush F, Ajori S (2020) The adsorption characteristics and thermo-mechanical properties of BxCyNz heteronanotubes under physical adsorption of Ni(II)-tetramethyldibenzotetraaza[14]annulene (NiTMTAA): insight from molecular dynamics approach. Comput Mater Sci 176:109554

    Google Scholar 

  35. Ajori S, Parsapour H, Ansari R (2020) A comprehensive analysis of the mechanical properties and fracture analysis of metallic glass nanocomposites reinforced by carbon nanotubes and Cu nanowires: a molecular dynamics study. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1746447

  36. Ajori S, Parsapour H, Ansari R (2020) A molecular dynamics study on the buckling behavior of single-walled carbon nanotubes filled with gold nanowires. J Mol Model 26(8):1–8

    Google Scholar 

  37. Parsapour H, Ajori S, Ansari R, Haghighi S (2019) Tensile characteristics of single-walled carbon nanotubes endohedrally decorated with gold nanowires: a molecular dynamics study. Diam Relat Mater 92:117–129

    Google Scholar 

  38. Liu C, Zhang Q, Stellacci F, Marzari N, Zheng L, Zhan Z (2011) Carbene-functionalized single-walled carbon nanotubes and their electrical properties. Small 7(9):1257–1263

    Google Scholar 

  39. Chu YY, Su MD (2004) Theoretical study of addition reactions of carbene, silylene, and germylene to carbon nanotubes. Chem Phys Lett 394(4–6):231–237

    Google Scholar 

  40. Beazley DM, Lomdahl PS, Grønbech-Jensen N, Giles R, Tamayo P (1995) Parallel algorithms for short-range molecular dynamics. In: Annual reviews of computational physics III, pp 119–175

  41. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Google Scholar 

  42. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14(4):783

    Google Scholar 

  43. Li X, Wang A, Lee KR (2018) Comparison of empirical potentials for calculating structural properties of amorphous carbon films by molecular dynamics simulation. Comput Mater Sci 151:246–254

    Google Scholar 

  44. Zhou LG, Shi SQ (2002) Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput Mater Sci 23(1–4):166–174

    Google Scholar 

  45. Mylvaganam K, Zhang LC (2004) Important issues in a molecular dynamics simulation for characterizing the mechanical properties of carbon nanotubes. Carbon 42(10):2025–2032

    Google Scholar 

  46. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ajori or R. Ansari.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajori, S., Boroushak, S.H. & Ansari, R. Fracture analysis and tensile properties of perfect and defective carbon nanotubes functionalized with carbene using molecular dynamics simulations. J Braz. Soc. Mech. Sci. Eng. 42, 450 (2020). https://doi.org/10.1007/s40430-020-02530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02530-z

Keywords

Navigation