Skip to main content

Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes

  • Chapter
  • First Online:
Modeling of Carbon Nanotubes, Graphene and their Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 188))

Abstract

Carbon nanotubes (CNTs) have potential applications in various fields of science and engineering due to their extremely high elasticity, strength, and thermal and electrical conductivity. Owing to their hollow and slender nature, these tubes are susceptible to buckling under a compressive axial load. As CNTs can undergo large, reversible post-buckling deformation, one may utilize this post-buckling response of CNT to manufacture mechanical energy storage devices at the nano-scale, or use it as a nano-knife or nano-pump. It is therefore important to understand the buckling behavior of CNTs under a compressive axial load. Experimental investigations on CNT buckling are very expensive and difficult to perform. As such, researchers often rely on molecular dynamics (MD) simulations, or continuum mechanics modeling to study their mechanical behaviors. In order to develop a good continuum mechanics model for buckling analysis of CNTs, one needs to possess adequate experimental or MD simulation data for its calibration. For “short” CNTs with small aspect ratios (≤10), researchers have reported different critical buckling loads/strains for the same CNTs based on MD simulations. Moreover, existing MD simulation data are not sufficiently comprehensive to allow rigorous benchmarking of continuum-based models. This chapter presents extensive sets of MD critical buckling loads/strains for armchair single-walled CNT (SWCNTs) and double-walled CNTs (DWCNTs), with various aspect ratios less than 10. These results serve to address the discrepancies found in the existing MD simulations, as well as to offer a comprehensive database for the critical buckling loads/strains for various armchair SWCNTs and DWCNTs. The Adaptive Intermolecular Reactive Bond Order (AIREBO) potential was adopted for MD simulations. Based on the MD results, the Young’s modulus, Poisson’s ratio and thickness for an equivalent continuum cylindrical shell model of CNTs are calibrated. The equivalent continuum shell model may be used to calculate the buckling loads of CNTs, in-lieu of MD simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ABAQUS/Standard User’s Manual, v.6.9.

    Google Scholar 

  • Aliev AE, Oh J, Kozlov ME, Kuznetsov AA, Fang S, Fonseca AF, Ovalle R, Lima MD, Haque MH, Gartstein YN, Zhang M, Zakhidov AA, Baughman RH (2009) Giant-stroke superelastic carbon nanotube aerogel muscles. Science 323:1575–1578

    Article  ADS  Google Scholar 

  • Ansari R, Rouhi S (2010) Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Phys E 43:58–69

    Article  Google Scholar 

  • Batra RC, Sears A (2007) Continuum models of multi-walled carbon nanotubes. Int J Solids Struct 44:7577–7596

    Article  MATH  Google Scholar 

  • Belytschko T, Xiao S, Schatz G, Ruoff R (2002) Atomistic simulations of nanotube fracture. Phys Rev B 65:235430

    Article  ADS  Google Scholar 

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys: Condens Matter 14:783–802

    Article  ADS  Google Scholar 

  • Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310

    Article  ADS  Google Scholar 

  • Chen X, Cao G (2006) A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation. Nanotechnology 17:1004–1015

    Article  ADS  Google Scholar 

  • Cheng HM, Yang QH, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454

    Article  Google Scholar 

  • Cheng HC, Liu YL, Hsu YC, Chen WH (2009) Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int J Solids Struct 46:1695–1704

    Article  MATH  Google Scholar 

  • Cohen-Karni T, Segev L, Srur-Lavi O, Cohen SR, Joselevich E (2006) Torsional electromechanical quantum oscillations in carbon nanotubes. Nat Nanotechnol 1:36–41

    Article  ADS  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  ADS  Google Scholar 

  • Duan WH, Wang CM, Tang WX (2010) Collision of a suddenly released bent carbon nanotube with a circular graphene sheet. J Appl Phys 107:074303

    Article  ADS  Google Scholar 

  • Endo M, Hayashi T, Kim YA (2006a) Large-scale production of carbon nanotubes and their applications. Pure Appl Chem 78:1703–1713

    Article  Google Scholar 

  • Endo M, Hayashi T, Kim YA, Muramatsu H (2006b) Development and application of carbon nanotubes. Jpn J Appl Phys 45:4883–4892

    Article  ADS  Google Scholar 

  • Flekkøy EG, Coveney PV, De Fabritiis G (2000) Foundations of dissipative particle dynamics. Phys Rev E 62:2140–2157

    Article  ADS  Google Scholar 

  • Frenkel D, Smith B (2002) Understanding molecular simulation: From alogorithms to applications, 2nd edn. Academic Press, USA

    Google Scholar 

  • Fuchslin RM, Fellermann H, Eriksson A, Ziock HJ (2009) Coarse graining and scaling in dissipative particle dynamics. J Chem Phys 130:214102

    Article  ADS  Google Scholar 

  • Gdoutos MSK, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement Concr Compos 32:110–115

    Article  Google Scholar 

  • Girifalco LA, Lad RA (1956) Energy of cohesion, compressibility, and the potential energy functions of the graphite system. J Chem Phys 25:693–697

    Article  ADS  Google Scholar 

  • Guangyong L, Liming L (2011) Carbon nanotubes for organic solar cells. Nanotechnology Magazine, IEEE 5:18–24

    Article  Google Scholar 

  • Guo X, Leung AYT, Jiang H, He XQ, Huang Y (2007) Critical strain of carbon nanotubes: An atomic-scale finite element study. J Appl Mech 74:347–351

    Article  MATH  Google Scholar 

  • Hall AR, Falvo MR, Superfine R, Washburn S (2007) Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. Nat Nanotechnol 2:413–416

    Article  ADS  Google Scholar 

  • Harik VM (2002) Mechanics of carbon nanotubes applicability of continuum-beam models. Comput Mater Sci 24:328–342

    Article  Google Scholar 

  • Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  Google Scholar 

  • Hayashi T, Kim YA, Matoba T, Esaka M, Nishimura K, Tsukada T, Endo M, Dresselhaus MS (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889

    Article  ADS  Google Scholar 

  • He XQ, Kitipornchai S, Liew KM (2005) Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der waals interaction. J Mech Phys Solids 53:303–326

    Article  ADS  MATH  Google Scholar 

  • He XQ, Kitipornchai S, Wang CM, Xiang Y, Zhou Q (2010) A nonlinear van der waals force model for multiwalled carbon nanotubes modeled by a nested system of cylindrical shells. J Appl Mech 77:061006

    Article  Google Scholar 

  • Heo SJ, Sinnott SB (2007) Investigation of influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. J Nanosci Nanotechnol 7:1518–1524

    Article  Google Scholar 

  • Hu N, Nunoya K, Pan D, Okabe T, Fukunaga H (2007) Prediction of buckling characteristics of carbon nanotubes. Int J Solids Struct 44:6535–6550

    Article  MATH  Google Scholar 

  • Hu YG, Liew KM, Wang Q (2009) Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. J Appl Phys 106:044301

    Google Scholar 

  • Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403

    Article  ADS  Google Scholar 

  • Hünenberger PH (2005) Thermostat algorithms for molecular dynamics simulations. Adv Polym Sci 173:105–147

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  Google Scholar 

  • Jiang H, Huang Y, Hwang KC (2005) A finite-temperature continuum theory based on interatomic potentials. J Eng Mater Technol 127:408–416

    Article  Google Scholar 

  • Khademolhosseini F, Rajapakse N, Nojeh A (2009) Application of nonlocal elasticity shell model for axial buckling of single-walled carbon nanotubes. Sens Trans 7:88–100

    Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  ADS  Google Scholar 

  • Klinger C, Patel Y, Postma HWC (2012) Carbon nanotube solar cells. PLoS ONE 7:37806

    Article  ADS  Google Scholar 

  • Korayem AH, Duan WH, Zhao XL, Wang CM (2012) Buckling behaviour of short multi-walled carbon nanotubes under axial compression loads. Int J Struct Stab Dyn 12:1250045

    Article  Google Scholar 

  • Kozinda A, Jiang Y, Lin L (2012) Flexible energy storage devices based on lift-off of cnt films, Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 1233–1236

    Google Scholar 

  • Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A (2007) High-performance carbon nanotube fiber. Science 318:1892–1895

    Article  ADS  Google Scholar 

  • Kulathunga DD, Ang KK, Reddy JN (2009) Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. J Phys: Condens Matter 21:435301

    Article  ADS  Google Scholar 

  • Lee K, Lukic B, Magrez A, Seo JW, Kulik A (2005) Diameter dependence of the elastic modulus of cvd-grown carbon nanotubes. XIX International winterschool/euroconference on electronic properties of novel materials, Austria, Electronic properties of novel nanostructures, pp 143–145

    Google Scholar 

  • Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499

    Article  MATH  Google Scholar 

  • Li QW, Li Y, Zhang XF, Chikkannanavar SB, Zhao YH, Dangelewicz AM, Zheng LX, Doorn SK, Jia QX, Peterson DE, Arendt PN, Zhu YT (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363

    Article  Google Scholar 

  • Liba O, Kauzlarić D, Abrams ZR, Hanein Y, Greiner A, Korvink JG (2008) A dissipative particle dynamics model of carbon nanotubes. Mol Simul 34:737–748

    Google Scholar 

  • Liew KM, Wong CH, He XQ, Tan MJ, Meguid SA (2004) Nanomechanics of single and multiwalled carbon nanotubes. Phys Rev B 69:115429

    Article  ADS  Google Scholar 

  • Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) The atomic-scale finite element method. Comput Method Appl Mech Eng 193:1849–1864

    Article  ADS  MATH  Google Scholar 

  • Liu F, Wang H, Xue L, Fan L, Zhu Z (2008) Effect of microstructure on the mechanical properties of pan-based carbon fibers during high-temperature graphitization. J Mater Sci 43:4316–4322

    Article  ADS  Google Scholar 

  • Lu WB, Wu J, Feng X, Hwang KC, Huang Y (2010) Buckling analyses of double-wall carbon nanotubes: A shell theory based on the interatomic potential. J Appl Mech 77:061016

    Article  Google Scholar 

  • Ma J, Wang JN, Wang XX (2009) Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications. J Mater Chem 19:3033–3041

    Article  Google Scholar 

  • Makar JM, Margeson J, Luh J (2005) Carbon nanotube/cement composites—early results and potential applications. In: The 3rd international conference on construction materials: performance, innovations and structural implications, Vancouver, B.C., Canada

    Google Scholar 

  • Pantano A, Boyce M, Parks D (2003) Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys Rev Lett 91:145504

    Article  ADS  Google Scholar 

  • Pantano A, Boyce MC, Parks DM (2004a) Mechanics of axial compression of single and multi-wall carbon nanotubes. J Eng Mater Technol 126:279–284

    Article  Google Scholar 

  • Pantano A, Parks DM, Boyce MC (2004b) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solid 52:789–821

    Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  ADS  MATH  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Reddy JN (2007) Theory and analysis of elastic plates and shells, 2nd edn. CRC Press, London

    Google Scholar 

  • Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  ADS  Google Scholar 

  • Sears A, Batra R (2006) Buckling of multiwalled carbon nanotubes under axial compression. Phys Rev B 73:085410

    Article  ADS  Google Scholar 

  • Shen HS (2004) Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int J Solids Struct 41:2643–2657

    Article  MATH  Google Scholar 

  • Stevens RMD, Frederick NA, Smith BL, Morse DE, Stucky GD, Hansma PK (2000) Carbon nanotubes as probes for atomic force microscopy. Nanotechnology 11:1–5

    Article  ADS  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  ADS  Google Scholar 

  • Subramaniyan AK, Sun CT (2008) Engineering molecular mechanics: An efficient static high temperature molecular simulation technique. Nanotechnology 19:285706

    Article  Google Scholar 

  • Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  Google Scholar 

  • Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161

    Article  ADS  Google Scholar 

  • Tanaka T (2010) Filtration characteristics of carbon nanotubes and preparation of buckypapers. Desalination and Water Treatment, 17:193–198

    Google Scholar 

  • Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M, Wu S-Y (2000) Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Lett Nat 405:769–772

    Article  Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1990) Computer simulation of molecular dynamics:Methodology, applications, and perspectives in chemistry. Angew Chem, Int Ed Engl 29:992–1023

    Article  Google Scholar 

  • Wackerfuß J (2009) Molecular mechanics in the context of the finite element method. Int J Numer Meth Eng 77:969–997

    Article  MATH  Google Scholar 

  • Wang CM, Ma YQ, Zhang YY, Ang KK (2006a) Buckling of double-walled carbon nanotubes modeled by solid shell elements. J Appl Phys 99:114317

    Article  ADS  Google Scholar 

  • Wang CM, Tan VBC, Zhang YY (2006b) Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vib 294:1060–1072

    Article  ADS  Google Scholar 

  • Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19:075609

    Article  ADS  Google Scholar 

  • Wang CM, Zhang YY, Xiang Y, Reddy JN (2010) Recent studies on buckling of carbon nanotubes. Appl Mech Rev 63:030804

    Article  ADS  Google Scholar 

  • Wang CM, Tay ZY, Chowdhuary ANR, Duan WH, Zhang YY, Silvestre N (2011) Examination of cylindrical shell theories for buckling of carbon nanotubes. Int J Struct Stab Dyn 11:1035–1058

    Article  Google Scholar 

  • Waters JF, Guduru PR, Xu JM (2006) Nanotube mechanics—recent progress in shell buckling mechanics and quantum electromechanical coupling. Compos Sci Technol 66:1141–1150

    Article  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  • Wu J, Hwang KC, Huang Y (2009) Chapter 1 a shell theory for carbon nanotubes based on the interatomic potential and atomic structure, Advances in Applied Mechanics. Elsevier, p 1–68

    Google Scholar 

  • Xia Z, Guduru P, Curtin W (2007) Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys Rev Lett, 98:245501

    Google Scholar 

  • Xiao T, Xu X, Liao K (2004) Characterization of nonlinear elasticity and elastic instability in single-walled carbon nanotubes. J Appl Phys 95:8145–8148

    Article  ADS  Google Scholar 

  • Xu Z, Buehler MJ (2010) Geometry controls conformation of graphene sheets: Membranes, ribbons, and scrolls. ACS Nano 4:3869–3876

    Article  Google Scholar 

  • Xu YQ, Barnard A, McEuen PL (2009) Bending and twisting of suspended single-walled carbon nanotubes in solution. Nano Lett 9:1609–1614

    Article  ADS  Google Scholar 

  • Yakobson BI, Avouris P (2001) Mechanical properties of carbon nanotubes, Topics in applied physics. Springer–Verlag, Heidelberg, Germany, 287–329

    Google Scholar 

  • Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  ADS  Google Scholar 

  • Zhang YY, Tan VBC, Wang CM (2006) Effect of chirality on buckling behavior of single-walled carbon nanotubes. J Appl Phy 100:074304

    Google Scholar 

  • Zhang YY, Wang CM, Tan VBC (2008) Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. J Appl Phys 103:053505

    Article  ADS  Google Scholar 

  • Zhang YY, Wang CM, Tan VBC (2009a) Mechanical properties and buckling behaviors of condensed double-walled carbon nanotubes. J Nanosci Nanotechnol 9:4870–4879

    Article  Google Scholar 

  • Zhang YY, Wang CM, Duan WH, Xiang Y, Zong Z (2009b) Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20:395707

    Article  ADS  Google Scholar 

  • Zheng Y, Lanqing X, Zheyong F, Wei N, Lu Y, Huang Z (2012) Mechanical properties of graphene nanobuds: a molecular dynamics study. Curr Nanosci 8:89–96

    Article  ADS  Google Scholar 

  • Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction—summary of a state-of-the-art report. Mater Struct 37:649–658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Wang .

Editor information

Editors and Affiliations

Appendix: AIREBO potential

Appendix: AIREBO potential

Adaptive Intermolecular Reactive Bond Order Potential (AIREBO) is one of the various interatomic potential available in LAMMPS. AIREBO potential developed by Stuart et al. (2000) is used in the present MD simulations. AIREBO potential comprises the second generation REBO potential \( U^{2nd - REBO} \), the torsion potential \( U^{Tors} \) and the Lennard-Jones potential \( U^{LJ} \).

1.1 Second generation REBO potential

The second generation REBO potential \( U^{2nd - REBO} \) accounts for covalent bond interaction and its function form is given by

$$ U^{2nd - REBO} = \sum\limits_{i} {\sum\limits_{j( > i)} {\left[ {V^{R} (r_{ij} ) - b_{ij} V^{A} (r_{ij} )} \right]} } $$
(A1)

where, \( V^{R} \) is the repulsive term, \( V^{A} \) is the attractive term and \( b_{ij} \) is bond order term. The repulsive term is given by

$$ V^{R} (r_{ij} ) = w_{ij} (r_{ij} )A_{ij} (1 + Q_{ij} /r_{ij} )e^{{ - \alpha_{ij} r_{ij} }} $$
(A2)

The function form of the attractive term is given by

$$ V^{A} (r_{ij} ) = w_{ij} (r_{ij} )\left[ {B_{1} e^{{ - \beta_{1} r_{ij} }} + B_{2} e^{{ - \beta_{2} r_{ij} }} + B_{3} e^{{ - \beta_{3} r_{ij} }} } \right] $$
(A3)

In Eqs. (A1)–(A3), \( w_{ij} \left( {r_{ij} } \right) \) is a switching function which automatically dictates whether covalent interaction needs to be considered between any two atoms. The switching function \( w_{ij} \left( {r_{ij} } \right) \) is given by

$$ w_{ij} (r_{ij} ) \, = \, \Uptheta ( - t) + \Uptheta (t)\Uptheta (1 - t)\left[ {1 + \cos \pi t} \right]/2, \, t \, = \, \frac{{r_{ij} - r_{ij}^{\hbox{min} } }}{{r_{ij}^{\hbox{max} } - r_{ij}^{\hbox{min} } }} $$
(A4)

where \( \Uptheta (t) \)is the Heaviside step function.

Values of the parameters for carbon–carbon (C–C) bond in Eqs. (A1)–(A4) are summarized in Table A.1.

Table A.1 Parameters in AIREBO potential for C–C bond

In the 2nd generation REBO potential, the influence of neighboring atoms on the considered atom is incorporated by using bond order function \( b_{ij} \) in Eq. (A1). The term \( b_{ij} \) adjusts attraction force between atoms based on the position of other neighboring atoms and thus considers multi-body interactions.

The bond order term \( b_{ij} \) for a bond i-j, depends on the neighborhood bond angles \( \theta \) and dihedral angles \( \varphi \). Function form of the bond order term is given by

$$ b_{ij} \approx \frac{1}{2}\left[ {p_{ij}^{\sigma \pi } + p_{ij}^{\pi \sigma } } \right] + \Uppi_{ij}^{DH} + \Uppi_{ij}^{RC} $$
(A5)

where

$$ p_{ij}^{\sigma \pi } = \left[ {1 + \sum\limits_{\alpha \ne i,j} {w_{i\alpha } (r_{i\alpha } )g_{C} (\cos (\theta {}_{ji\alpha })) + P_{CC} (N_{i}^{C} ,N_{i}^{H} )} } \right]^{ - 1/2} $$
(A6)

and \( p_{ji}^{\sigma \pi } \) is similar to Eq. (A6) except the indices i and j are interchanged. The pair-angle cross interaction is incorporated by function \( g_{c} \left( {\cos \left( {\theta_{ji\alpha } } \right)} \right) \) which depends on the angle between bond i-j and neighboring atom \( \alpha \). In a pristine CNT, \( g_{c} \left( {\cos \left( {\theta_{ji\alpha } } \right)} \right) \) is a function of two angles\( \theta_{ji\alpha } \), where \( \alpha = k \), m (see Fig. A.1a).

Fig. A.1
figure 17

(a) Typical C–C bond in a CNT and its neighborhood (b) Definition of dihedral angle

The function \( g_{c} \left( {\cos \left( {\theta_{ji\alpha } } \right)} \right) \) in Eq. (A6) is fitted to a quintic spline. The coefficients of the quintic spline function are evaluated by LAMMPS using the values given in Table A.2.

Table A.2 Interpolation points for quintic spline \( y(x) = \sum\limits_{m = 0}^{5} {C_{m} (x - x_{k} )^{m} } \) Stuart et al. (2000)

In each interval of cos(\( \theta \)), six values of interpolation points are reported in Table A.2. These six values are used to derive the coefficients of the quintic spline. For pristine CNT \( P_{\text{CC}} (N_{i}^{C} ,N_{i}^{H} ) \) in Eq. (A6) is −0.027603.

The function \( \Uppi_{ij}^{DH} \) in Eq. (A5) represents the cross interaction between pair i-j and dihedral angle \( \varphi_{\alpha ij\beta } \). In a pristine CNT, a bond pair i-j is affected by four dihedral angles. These four dihedral angles can be represented as \( \varphi_{\alpha ij\beta } \) where \( \alpha \, = k,\,m \) and \( \beta = l,\,n\) (please refer to Fig. A.1a). Function \( \Uppi_{ij}^{DH} \) is equal to the expression given by Eq. (A7).

$$ T_{ij} (N_{i}^{t} ,N_{j}^{t} ,N_{ij}^{conj} )\sum\limits_{\alpha \ne i,j} {\sum\limits_{\beta \ne i,j} {\left( {1 - \cos^{2} \left( \varphi \right)} \right)w_{i\alpha }^{{}} w_{j\beta }^{{}} \Uptheta (\sin (\theta_{ji\alpha } - s^{\hbox{min} } ))\Uptheta (\sin (\theta_{ij\beta } - s^{\hbox{min} } ))} } $$
(A7)

where \( w_{\alpha \beta } \) is the switching function to be calculated as per Eq. (A4). In a pristine CNT, \( T_{ij} (N_{ij}^{{}} ,N_{ji}^{{}} ,N_{ij}^{\text{conj}} )\,{ = - 0} . 0 0 4 0 4 8 \). The radical term \( \Uppi_{ij}^{\text{RC}} \)in Equation (A5) does not contribute to force on an atom in CNT.

1.2 Torsion term

The torsion term \( U^{Tors} \) in AIREBO potential is a valence term which adds stiffness to the dihedral rotation about a bond pair i-j as shown in Fig. A.2a.

Fig. A.2
figure 18

(a) Dihedral bond rotation, (b) Typical neighborhood of an atom with id 1 in pristine carbon nanotube

The torsion potential \( U^{Tors} \) is given by

$$ U_{\alpha ij\beta }^{tors} = \, w_{\alpha i} (r_{\alpha i} )w_{ij} (r_{ij} )w_{j\beta } (r_{j\beta } )V^{tors} (\omega_{\alpha ij\beta } ) $$
(A8)
$$ V^{tors} = \frac{256}{405}\varepsilon_{\alpha ij\beta } \cos^{10} (\omega_{\alpha ij\beta } /2) - \frac{1}{10}\varepsilon_{\alpha ij\beta } $$
(A9)

The value of \( \varepsilon_{\alpha ij\beta } \) for CNT is 0.3079. The number of dihedral angles in CNT which contribute to the forces on an atom i depends on the neighborhood of that atom. There are 25 dihedral angles in a pristine CNT, which contribute to the forces on atom 1 shown in Fig. A.2b. The switching functions w(r) in Eq. (A8) is used by the MD code to determine all the dihedral angles contributing to force on an atom. Switching function w(r) in Eq. (A8) are calculated by using Eq. (A4).

1.3 Non-bonded potential

The non-bonded potential \( U^{LJ} \) given by Eq. (A10), takes into account a pair type interaction between atoms which have interatomic distances ≥2 Å. In LAMMPS, one needs to specify a cutoff distance beyond which the non-bonded potential does not contribute to interatomic forces. In the case of C–C bond, this cutoff is taken as 10.2 Å but the user may set a longer cutoff distance at an expense of more computational time. The non-bonded potential is given by

$$ \begin{gathered} U_{ij}^{LJ} = \, S(t_{r} (r_{ij} ))S(t_{b} (b_{ij}^{*} ))C_{ij} V^{LJ} (r_{ij} ) + \left[ {1 - S(t_{r} (r_{ij} ))} \right]C_{ij} V^{LJ} (r_{ij} ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,w_{ij} (r_{ij} ) \, = \, S^{'} (t_{c} (r_{ij} )), \, t_{c} (r_{ij} ) \, = \, \frac{{r_{ij} - r_{ij}^{LJ\hbox{min} } }}{{r_{ij}^{LJ\hbox{max} } - r_{ij}^{LJ\hbox{min} } }} \hfill \\ \end{gathered} $$
(A10)

where \( \begin{gathered} S^{'} (t)\; = \, \Uptheta ( - t) + \Uptheta (t)\Uptheta (1 - t)\frac{1}{2}\left[ {1 + \cos \pi t} \right] \hfill \\ t_{b} (b_{ij}^{*} ) \, = \, \frac{{b_{ij}^{*} \, - \, b_{ij}^{\hbox{min} } }}{{b_{ij}^{\hbox{max} } - b_{ij}^{\hbox{min} } }} \hfill \\ \end{gathered} \)

In Eq. (A10), \( b_{ij}^{*} \) is a hypothetical bond-order term which is evaluated at \( r_{ij}^{ \hbox{min} } \). To understand the previous statement, let us consider the non-bonded interaction between atom i and j. Since the distance between these two atoms typically exceeds the covalent bonding distance \( r_{ij}^{\hbox{max} } \)(for C–C bond \( r_{ij}^{\hbox{max} } = 2.0 \) Å), there is no actual bond-order term \( b_{ij} \) (Eq. A5). Consequently a hypothetical bond order term \( b_{ij}^{*} \) is evaluated by assuming the distance between atoms i and j to be 1.7 Å. In Eq. (A10), \( V^{LJ} \) is a 12-6 Lennard-Jones potential which is given by Eq. (A11).

$$ V_{ij}^{LJ} = \, 4\varepsilon_{ij} \left[ {\left( {\frac{\sigma }{{r_{ij} }}} \right)^{12} - \left( {\frac{\sigma }{{r_{ij} }}} \right)^{6} } \right] $$
(A11)

The parameters required to evaluate the non-bonded interaction in CNT are \( \sigma = { 3}. 4 {\text{\AA}} \), \( {{\upvarepsilon}}_{\text{ij}} { = 0} . 0 0 2 8 4 {\text{ eV}} \), \( r_{\text{ij}}^{\text{LJ max}} { = }\,{{\upsigma}} \), \( r_{\text{ij}}^{\text{LJ min}} { = }\, 2^{{{1 \mathord{\left/ {\vphantom {1 {}}} \right. \kern-0pt} {}}6}} \,\sigma \), \( b_{\text{ij}}^{ \hbox{max} } { = 0} . 8 1 \) and \( b_{\text{ij}}^{ \hbox{min} } { = 0} . 7 7 \).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, C.M., Roy Chowdhury, A.N., Koh, S.J.A., Zhang, Y.Y. (2014). Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes. In: Tserpes, K., Silvestre, N. (eds) Modeling of Carbon Nanotubes, Graphene and their Composites. Springer Series in Materials Science, vol 188. Springer, Cham. https://doi.org/10.1007/978-3-319-01201-8_8

Download citation

Publish with us

Policies and ethics