Skip to main content
Log in

Photoexcitation of oxazine 170 dye in aqueous solution: TD-DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The vibronic absorption spectra of OX170 dye in an aqueous solution using 40 hybrid functionals, the 6–31 +  + G(d,p) basis set, and the SMD solvent model were calculated. It turned out that the long-range corrected ωB97XD functional provided the best agreement with the experiment in the positions of the main maximum and the short-wavelength shoulder. Calculations showed that this shoulder is vibronic and is not caused by a separate electronic transition. At the same time, the shoulder intensity in the calculated spectrum turned out to be lower than in the experimental one. Various parameters of the OX170 cation in the ground and excited states (IR spectra, atomic charges, dipole moments, and transition moment) were calculated. Maps of the distribution of electron density and electrostatic potential have been built. The influence of four strong hydrogen bonds of the dye with water molecules on the absorption spectrum was analyzed. It was shown that these bonds are strengthened upon OX170 excitation. It was found that explicit assignment of water molecules strongly bound to the dye leads to a redshift of the calculated spectrum by ≈15 nm as a whole, and worsened its shape. Photoexcitation of the dye leads to a noticeable polarization of only one of the four considered water molecules (associated with the endocyclic nitrogen atom in the central ring of the chromophore, the electron density on which increases the most).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All additional data is contained in the attachment.

Code availability

Not applicable.

References

  1. Reisfeld R (1987) Criteria and prospects of new lasers based on fluorescent dyes in glasses. J Phys Coll 48(C7):423–426

    Google Scholar 

  2. Drexhage KH (1976) Fluorescence efficiency of laser dyes. J Res Natl Bur Stand 80A:421–428

    Article  CAS  Google Scholar 

  3. P. Miluski, M. Kochanowicz, J. Zmojda, D. Dorosz, Theoretical investigation of Oxazine 170 perchlorate doped polymeric optical fiber amplifier, Math. Problems Eng. (2017) 4024191.

  4. Duong HD, Rhee JI (2014) A ratiometric fluorescence sensor for the detection of ammonia in water. Sensors Actuators B 190:768–774

    Article  CAS  Google Scholar 

  5. Duong HD, Rhee JI (2015) Development of a ratiometric fluorescent urea biosensor based on the urease immobilized onto the oxazine 170 perchlorate-ethylcellulose membrane. Talanta 134:333–339

    Article  Google Scholar 

  6. Chu C-S, Su C-J (2018) Fluorescence ratiometric optical broad range pH sensor based on CdSe/ZnS quantum dots and O170 embedded in ethyl cellulose matrix. J Lightwave Tech 36:857–862

    Article  CAS  Google Scholar 

  7. Leal-Junior AG, Frizera A, Marques C (2020) High sensitive ammonia detection in water with Fabry-Perot interferometers. IEEE Photonics Tech Lett 32:863–866

    Article  CAS  Google Scholar 

  8. An K, Duong HD, Rhee JI (2017) Ratiometric fluorescent l-arginine and l-asparagine biosensors based on the oxazine 170 perchlorate-ethyl cellulose membrane. Eng Life Sci 17:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Song G, Xing F, Qu X, Chaires JB, Ren J (2005) Oxazine 170 Induces DNA:RNA:DNA triplex formation. J Med Chem 48:3471–3473

    Article  CAS  PubMed  Google Scholar 

  10. Kang T-W, Lee I-J (2007) Effect of hosts on the aggregation behavior of Oxazine 720. J Korean Ind Eng Chem 18:90–93

    CAS  Google Scholar 

  11. Liu D, Kamat PV (1995) Electrochemically active nanocrystalline SnO2 films: surface modification with thiazine and oxazine dye aggregates. J Electrochem Soc 142:835–839

    Article  CAS  Google Scholar 

  12. Mironov LYu (2016) Influence of complexing ion on the fluorescence sensitization efficiency for oxazine dyes in nanoparticles of Sc, Eu, Sm, and Lu Diketonates, Optics. Spectrosc 121:867–873

    CAS  Google Scholar 

  13. Ramamurthy V, Sanderson DR, Eaton DF (1993) Control of dye assembly within zeolites: role of water. J Am Chem Soc 115:10438–10439

    Article  CAS  Google Scholar 

  14. Kedia S, Sinha S (2015) Energy transfer from Rhodamine-B to Oxazine-170 in the presence of photonic stop band. Optics Commun 339:41–46

    Article  CAS  Google Scholar 

  15. Schneider S, Stammler W, Bierl R, Jtiger W (1994) Ultrafast photoinduced charge separation and recombination in weakly bound complexes between oxazine dyes and N, N-dimethylaniline. Chem Phys Lett 219:433–439

    Article  CAS  Google Scholar 

  16. Kopf U, Heinze J (1984) 2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm. Anal Chem 56:1931–1935

    Article  CAS  Google Scholar 

  17. Kusinski M, Nagesh J, Gladkikh M, Izmaylov AF, Jockusch RA (2019) Deuterium isotope effect in fluorescence of gaseous oxazine dyes. Phys Chem Chem Phys 21:5759–5770

    Article  CAS  PubMed  Google Scholar 

  18. Kenney MJ, Jankowiak R, Small GJ (1990) Dispersive kinetics of nonphotochemical hole growth for oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues. Chem Phys 146:47–61

    Article  CAS  Google Scholar 

  19. Kjaer C, Nielsen SB (2018) Luminescence spectroscopy of oxazine dye cations isolated in vacuo. Phys Chem Chem Phys 21:4600–4605

    Article  Google Scholar 

  20. Miluski P (2017) Luminescent properties of Oxazine 170 perchlorate doped PMMA fiber. Fibers 5:15

    Article  Google Scholar 

  21. Grofcsik A, Jones WJ (1992) Stimulated emission cross-sections in fluorescent dye gain spectra and excited-state lifetimes of Nile Blue A and Oxazine 720 in solutions. J Chem Soc Faraday Trans 88:1101–1106

    Article  CAS  Google Scholar 

  22. Weiner AM, Ippen EP (1985) Femtosecond excited state relaxation of dye molecules in solution. Chem Phys Lett 114:456–460

    Article  CAS  Google Scholar 

  23. Grofcsik A, Kubinyi M, Jones WJ (1996) Intermolecular photoinduced proton transfer in nile blue and oxazine 720. Chem Phys Lett 250:261–265

    Article  CAS  Google Scholar 

  24. Kubinyi M, Grofcsik A, Paapai I, Jones WJ (2003) Rotational reorientation dynamics of nile blue A and oxazine 720 in protic solvents. Chem Phys 286:81–96

    Article  CAS  Google Scholar 

  25. Laermer F, Elsaesser T, Kaiser W (1989) Ultrashort vibronic and thermal relaxation of dye molecules after femtosecond ultraviolet excitation. Chem Phys Lett 156:381–386

    Article  CAS  Google Scholar 

  26. Steinhurst DA, Owrutsky JC (2001) Second harmonic generation from oxazine dyes at the air/water interface. J Phys Chem B 105:3062–3072

    Article  CAS  Google Scholar 

  27. Milanchian K, Tajalli H, Eyni Z, Zakerhamidi MS (2016) Study of molecular aggregation effects on the nonlinear refractive index and absorption of Oxazin 720 laser dye, Canad. J Phys 94:834–838

    CAS  Google Scholar 

  28. Gernert C, Grotemeyer J (2015) Photodissociation at various wavelengths: fragmentation studies of oxazine 170 using nanosecond laser pulses. Eur J Mass Spectrom 21:599–608

    Article  CAS  Google Scholar 

  29. Rauf MA, Zaman MZ (1988) Radiation-induced decoloration of oxazine in ethanolic solution. J Radioanal Nucl Chem 120:41–47

    Article  CAS  Google Scholar 

  30. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018

    Article  CAS  Google Scholar 

  31. Brolo AG, Sanderson AC (2004) Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720. Can J Chem 82:1474–1480

    Article  CAS  Google Scholar 

  32. Brolo AG, Addison CJ (2005) Surface-enhanced Raman scattering from oxazine 720 adsorbed on scratched gold films. J Raman Spectrosc 36:629–634

    Article  CAS  Google Scholar 

  33. Anema JR, Brolo AG (2007) The use of polarization-dependent SERS from scratched gold films to selectively eliminate solution-phase interference. Plasmonics 2:157–162

    Article  CAS  Google Scholar 

  34. Blau W, Dankesreiter W, Penzkofer A (1984) Saturable Absorption of dyes excited to the long-wavelength region of the S0–S1 absorption band. Chem Phys 85:473–479

    Article  CAS  Google Scholar 

  35. Zhu R, Zou J, Wang Z, Chen H, Weng Y (2020) Electronic state-resolved multimode-coupled vibrational wavepackets in oxazine 720 by two-dimensional electronic spectroscopy. J Phys Chem A 124:9333–9342

    Article  CAS  PubMed  Google Scholar 

  36. Gvishi R, Reisfeld R (1991) Spectroscopy of laser dye oxazine-170 in sol-gel glasses. J Non-Crystalline Solids 128:69–76

    Article  CAS  Google Scholar 

  37. Gvishi R, Reisfeld R (1989) An investigation of the equilibrium between various forms of oxazine-170 by means of absorption and fluorescence spectroscopy. Chem Phys Lett 156:181–186

    Article  CAS  Google Scholar 

  38. Zakerhamidi MS, Tajalli H, Ghanadzadeh A, Milanchian K, Hosseini Nasab N, Moghadam M (2010) Effect of hydrophilic gel composition on photo-physical behavior of Oxazine720. J. Mol. Liquids 154:18–22

    Article  CAS  Google Scholar 

  39. Milanchian K, Tajalli H, Ghanadzadeh Gilani A, Zakerhamidi MS (2009) Nonlinear optical properties of two oxazine dyes in aqueous solution and polyacrylamide hydrogel using single beam Z-scan Opt. Mater 32:12–17

    CAS  Google Scholar 

  40. Ghanadzadeh A, Tajalli H, Zirack P, Shirdel J (2004) On the photo-physical behavior and electro-optical effect of oxazine dyes in anisotropic host. Spectrochim Acta A 60:2925–2932

    Article  CAS  Google Scholar 

  41. Zakerhamidi MS, GolghasemiSorkhabi S (2015) Solvent effects on the molecular resonance structures and photo-physical properties of a group of oxazine dyes. J. Luminesc. 157:220–228

    Article  CAS  Google Scholar 

  42. Eyal M, Gvishi R, Reisfeld R (1987) Spectroscopie of laser dye oxazine-170 as a function of environment and pH. J Phys Coll 48(C7):471–473

    Google Scholar 

  43. Gvishi R, Reisfeld R, Eisen M (1989) Structures, spectra and ground and excited state equilibria of polycations of oxazine-170. Chem Phys Lett 16:455–460

    Article  Google Scholar 

  44. Giuliani JF, Barrett TW (1983) The effect of ammonia ions on the absorption and fluorescence of an oxazine dye. Spectrosc Lett 16:555–563

    Article  CAS  Google Scholar 

  45. Beuerman E, Makarov N, Drobizhev M, Rebane A (2010) Justification of two-level approximation for description of two-photon absorption in oxazine dyes. Proc SPIE 7599:75990X

    Article  Google Scholar 

  46. Blanchard GJ (1989) AN MNDO calculational study of selected oxazine, thiazine and oxazone dyes. Chem Phys 138:365–375

    Article  CAS  Google Scholar 

  47. Grofcsik A, Kubinyi M, Ruzsinszky A, Veszpremi T, Jones WJ (2000) Quantum chemical studies on excited state intermolecular proton transfer of oxazine dyes. J Mol Structure 555:15–19

    Article  CAS  Google Scholar 

  48. Fleming S, Mills A, Tuttle T (2011) Predicting the UV-vis spectra of oxazine dyes. Beilstein J Org Chem 7:432–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comp Chem 24:669–681

    Article  CAS  Google Scholar 

  50. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  51. P. Zhou, Why the lowest electronic excitations of rhodamines are overestimated by time-dependent density functional theory, Int. J. Quantum Chem. (2018) e25780.

  52. Moore B, Schrader RL, Kowalski K, Autschbach J (2017) Electronic π-to-π* Excitations of rhodamine dyes exhibit a time-dependent Kohn-Sham theory “cyanine problem.” ChemistryOpen 6:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jacquemin D, Brémond E, Planchat A, Ciofini I, Adamo C (2011) TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes. J Chem Theory Comput 7:1882–1892

    Article  CAS  PubMed  Google Scholar 

  54. Adamo C, Jacquemin D (2013) The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem Soc Rev 42:845–856

    Article  CAS  Google Scholar 

  55. Jacquemin D, Brémond E, Ciofini I, Adamo C (2012) Impact of vibronic couplings on perceived colors: two anthraquinones as a working example. J Phys Chem Lett 3:468–471

    Article  CAS  PubMed  Google Scholar 

  56. Lopez GV, Chang C-H, Johnson PM, Hall GE, Sears TJ, Markiewicz B, Milan M, Teslja A (2012) What is the best DFT functional for vibronic calculations? A comparison of the calculated vibronic structure of the S1–S0 transition of phenylacetylene with cavity ringdown band intensities. J Phys Chem A 116:6750–6758

    Article  CAS  PubMed  Google Scholar 

  57. Condon EU (1928) Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev 32:858–872

    Article  CAS  Google Scholar 

  58. Baiardi A, Bloino J, Barone V (2013) General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects. J Chem Theory Comput 9:4097–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams–Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01, Inc., Wallingford CT, 2016.

  60. G. Herzberg, E. Teller, Schwingungsstruktur der Elektronenubergange bei mehratomigen Molekulen, Z. Phys. Chem., Abt. B 21 (1933) 410–446.

  61. Santoro F, Lami A, Improta R, Bloino J, Barone V (2008) Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: the Qx band of porphyrin as a case study. J Chem Phys 128:224311

    Article  PubMed  Google Scholar 

  62. Duschinsky F (1937) The importance of the electron spectrum in multi atomic molecules Concerning the Franck-Condon principle. Acta Physicochim. URSS 7:551

    Google Scholar 

  63. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  PubMed  Google Scholar 

  64. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127:074504

    Article  PubMed  Google Scholar 

  65. Barboza CA, Vazquez PAM, Carey DM-L, Arratia-Perez R (2012) A TD-DFT basis set and density functional assessment for the calculation of electronic excitation energies of fluorene. Int J Quant Chem 112:3434–3438

    Article  CAS  Google Scholar 

  66. Dierksen M, Grimme S (2004) The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “exact” Hartree-Fock Exchange. J Phys Chem A 108:10225–10237

    Article  CAS  Google Scholar 

  67. Charaf-Eddin A, Planchat A, Mennucci B, Adamo C, Jacquemin D (2013) Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J Chem Theory Comput 9:2749–2760

    Article  CAS  PubMed  Google Scholar 

  68. Kantchev EAB, Norsten TB, Sullivan MB (2012) Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org Biomol Chem 10:6682–6692

    Article  CAS  PubMed  Google Scholar 

  69. R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 6.1, Semichem Inc., Shawnee Mission KS, 2016.

  70. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  71. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  72. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  73. Zhao GJ, Han KL (2008) Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening. ChemPhysChem 9:1842–1846

    Article  CAS  PubMed  Google Scholar 

  74. Qin Z, Li X, Zhou M (2014) A theoretical study on hydrogen-bonded complex of proflavine cation and water: the site-dependent feature of hydrogen bond strengthening and weakening. J Chin Chem Soc 61:1199–1204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Victor V. Kostjukov.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3946 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostjukov, V.V. Photoexcitation of oxazine 170 dye in aqueous solution: TD-DFT study. J Mol Model 27, 311 (2021). https://doi.org/10.1007/s00894-021-04931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04931-w

Keywords

Navigation