Skip to main content
Log in

Excitation of neutral red dye in aqueous media: comparative theoretical analysis of neutral and cationic forms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The main goal of this work was the theoretical interpretation of the absorption spectra of neutral red in an aqueous solution (both neutral NR0 and protonated NR+ forms). To achieve this problem, TD-DFT/DFT calculations with different hybrid functionals, the IEFPCM solvent model, and the 6–31 +  + G(d,p) basis set were used. MN12SX functional provided the best agreement with the experiment for both dye forms. While the absorption band of the cationic form of the dye in the visible region of the spectrum is due to one transition S0 → S1 (HOMO–LUMO), for its neutral form, there are two transitions S0 → S1 (HOMO → LUMO) and S0 → S2 (HOMO-1 → LUMO), with the latter having a higher intensity. The protonation of the dye chromophore introduces significant changes in HOMO shape. At the same time, LUMOs are almost the same for the protonated and neutral forms of the NR. During the transition from NR0 to the S1 state, its dipole moment increases more significantly than during the transition to the S2 state. Calculations confirmed the assumption of Singh et al. about the existence of two closely spaced excited states of NR0, the first of which has a larger dipole moment. However, the hypothesis of these authors about the corresponding intramolecular charge transfer, as well as the huge value of the dipole moment of this excited state (~ 20 D) declared by them, was not confirmed by present calculations. It was shown that the photoinduced charge redistribution in both the neutral and cationic forms of the dye is local, and the corresponding dipole moment is ~ 10 D. This agrees with other early theoretical work by Aaron et al. The influence on the NR+ absorption spectrum of hydrating water molecules was also analyzed. It was found that the interplay of electrostatic and site-specific contributions leads to the fact that NR solvatochromism does not have a pronounced dependence on the polarity of the solvent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All additional data is contained in the attachment.

Code availability

Not applicable.

References

  1. Kirk PW (1970) Neutral red as a lipid fluorochrome. Stain Tech 45:1–4

    Article  CAS  Google Scholar 

  2. Xu L, Wang J, Sun N, Liu M, Cao Y, Wanga Z, Pei R (2016) Neutral red as a specific light-up fluorescent probe for i-motif DNA. Chem Commun 52:14330–14333

    Article  CAS  Google Scholar 

  3. Kotyk A, Slavik J (1989) Intracellular pH and its measurement, CRC Press 192 p

  4. Sousa C, Melo TS, Geze M, Gaullier J-M, Maziere JC, Santus R (1996) Solvent polarity and pH effects on the spectroscopic properties of neutral red: application to lysosomal microenvironment probing in living cells. Photochem Photobiol 63:601–607

    Article  CAS  PubMed  Google Scholar 

  5. Hashemi P, Zarjani RA (2008) A wide range pH optical sensor with mixture of neutral red and thionin immobilized on an agarose film coated glass slide. Sensors Actuators B 135:112–115

    Article  CAS  Google Scholar 

  6. Goicoechea J, Zamarreno CR, Matias IR, Arregui FJ (2008) Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled neutral red. Sensors Actuators B 132:305–311

    Article  CAS  Google Scholar 

  7. Mohanty J, Bhasikuttan AC, Nau WM, Pal H (2006) Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and β -cyclodextrin. J Phys Chem B 110:5132–5138

    Article  CAS  PubMed  Google Scholar 

  8. Dutta RK, Bhat SN (1993) Association of neutral red with micelles and its effect on the pK. Can J Chem 71:1785–1791

    Article  CAS  Google Scholar 

  9. Singh MK, Pal H, Koti ASR, Sapre AV (2004) Photophysical properties and rotational relaxation dynamics of neutral red bound to β-cyclodextrin. J Phys Chem A 108:1465–1474

    Article  CAS  Google Scholar 

  10. Rao NV, Narayana KL (1982) Aggregation of neutral red. Ind J Chem 21A:995–996

    CAS  Google Scholar 

  11. Gohain B, Sarma S, Dutta RK (2008) Protonated dye-surfactant ion pair formation between neutral red and anionic surfactants in aqueous submicellar solutions. J Mol Liquids 142:130–135

    Article  CAS  Google Scholar 

  12. George M, Muneera CI, Singh CP, Bindra KS, Oak SM (2008) Z-scan studies and optical limiting of nanosecond laser pulses in neutral red dye. Optics Laser Tech 40:373–378

    Article  CAS  Google Scholar 

  13. Pathrose BP, Prakash A, Nampoori VPN, Radhakrishnan P, Sahira H, Mujeeb A (2018) Lasing and spectral characteristics of neutral red dye. Optik 156:988–993

    Article  CAS  Google Scholar 

  14. Prakash A, Pathrose BP, Radhakrishnan P, Mujeeb A (2020) Nonlinear optical properties of neutral red dye: enhancement using laser ablated gold nanoparticles. Opt Laser Tech 130:106338

    Article  CAS  Google Scholar 

  15. Rao NV, Narayana KL (1983) Aggregation of neutral red: part II. Ind J Chem 22A:887–889

    CAS  Google Scholar 

  16. Tamiji Z, Yazdanipour A, Niazi A (2018) Spectrophotometric and thermodynamic study on the dimerization equilibrium of neutral red in the water and micelle environments by chemometrics methods. Int J Exp Spectrosc Tech 3:015

    Article  Google Scholar 

  17. Goftar MK, Moradi K, Kor NM (2014) Spectroscopic studies on aggregation phenomena of dyes. Eur J Exp Biol 4:72–81

    Google Scholar 

  18. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J (1999) UV–Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 49:99–106

    Article  CAS  PubMed  Google Scholar 

  19. Niazi A, Yazdanipour A, Ghasemi J, Kubista M (2006) Spectrophotometric and thermodynamic study on the dimerization equilibrium of ionic dyes in water by chemometrics method. Spectrochim Acta A 65:73–78

    Article  CAS  Google Scholar 

  20. Marks GT, Lee ED, Aikens DA, Richto HH (1984) Transient photochemistry of neutral red. Photochem Photobiol 39:323–328

    Article  CAS  Google Scholar 

  21. Dutt GB, Ghanty TK, Singh MK (2001) Rotational dynamics of neutral red in dimethylsulfoxide: how important is the solute’s charge in causing “additional friction?” J Chem Phys 115:10845–10851

    Article  CAS  Google Scholar 

  22. Dutt GB, Singh MK, Sapre AV (1998) Rotational dynamics of neutral red: do ionic and neutral solutes experience the same friction? J Chem Phys 109:5994–6003

    Article  CAS  Google Scholar 

  23. Drummond CJ, Grieser F, Healy TW (1989) Acid-base equilibria in aqueous micellar solutions. Part 3 - azine derivatives. J Chem Soc Faraday Trans I 85:551–560

    Article  CAS  Google Scholar 

  24. Boruah B, Gohain B, Saikia PM, Borah M, Dutta RK (2011) Acid–base equilibrium of neutral red in aqueous nonionic surfactant–polymer systems. J Mol Liquids 160:50–56

    Article  CAS  Google Scholar 

  25. Basu S, Panigrahi S, Praharaj S, Ghosh SK, Pande S, Jana S, Pal A, Pal T (2007) Solvent effect on the electronic spectra of azine dyes under alkaline condition. J Phys Chem A 111:578–583

    Article  CAS  PubMed  Google Scholar 

  26. Singh MK, Pal H, Bhasikuttan AC, Sapre AV (1998) Dual solvatochromism of neutral red. Photochem Photobiol 68:32–38

    Article  CAS  Google Scholar 

  27. Rauf MA, Soliman AA, Khattab M (2008) Solvent effect on the spectral properties of neutral red. Chem Centr J 2:19

    Article  CAS  Google Scholar 

  28. Singh MK, Pal H, Bhasikuttan AC, Sapre AV (1999) Photophysical properties of the cationic form of neutral red. Photochem Photobiol 69:529–535

    Article  CAS  Google Scholar 

  29. Azariah AN, Berchmans S, Yegnaraman V (1998) Electrochemical behaviour of neutral red. Bull Electrochem 14:309–314

    CAS  Google Scholar 

  30. Singh MK, Walrafen GE (2005) New method for determining H-bond energy: fluorescence between neutral red in water compared to fluorescence between neutral red in benzene. J Solution Chem 34:579–583

    Article  CAS  Google Scholar 

  31. Aaron JJ, Maafi M, Parkanyi C, Boniface C (1995) Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments. Spectrochim Acta A 51:603–615

    Article  Google Scholar 

  32. Homem-de-Mello P, Mennucci B, Tomasi J, da Silva ABF (2005) The effects of solvation in the theoretical spectra of cationic dyes. Theor Chem Acc 113:274–280

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB and Fox DJ (2016) Gaussian 16, Revision C.01, Inc., Wallingford CT

  34. Condon EU (1928) Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev 32:858–872

    Article  CAS  Google Scholar 

  35. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  CAS  Google Scholar 

  36. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  37. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107

    Article  CAS  Google Scholar 

  38. Baiardi A, Bloino J, Barone V (2013) General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects. J Chem Theory Comput 9:4097–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jacquemin D, Adamo C (2012) Basis set and functional effects on excited-state properties: three bicyclic chromogens as working examples. Int J Quantum Chem 112:2135–2141

    Article  CAS  Google Scholar 

  40. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6.1, Semichem Inc., Shawnee Mission KS

  41. Dierksen M, Grimme S (2004) The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “Exact” Hartree-Fock exchange. J Phys Chem A 108:10225–10237

    Article  CAS  Google Scholar 

  42. Kantchev EAB, Norsten TB, Sullivan MB (2012) Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org Biomol Chem 10:6682–6692

    Article  CAS  PubMed  Google Scholar 

  43. Peverati R, Truhlar DG (2012) Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys Chem Chem Phys 14:16187–16191

    Article  CAS  PubMed  Google Scholar 

  44. Obasuyi AR, Glossman-Mitnik D, Flores-Holguín N (2019) Electron injection in anthocyanidin and betalain dyes for dye-sensitized solar cells: a DFT approach. J Comput Electronics 18:396–406

    Article  CAS  Google Scholar 

  45. Frau J, Glossman-Mitnik D (2018) Computational study of the chemical reactivity of the Blue-M1 intermediate melanoidin, Comput. Theor Chem 1134:22–29

    Article  CAS  Google Scholar 

  46. Frau J, Glossman-Mitnik D (2018) Chemical reactivity theory applied to the calculation of the local reactivity descriptors of a colored maillard reaction product. Chem Sci Int J 22:1–14

    Article  Google Scholar 

  47. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  48. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  49. Le Bahers T, Adamo C, Ciofini I (2011) A qualitative index of spatial extent in charge-transfer excitations. J Chem Theory Comput 7:2498–2506

    Article  PubMed  CAS  Google Scholar 

  50. Guido CA, Cortona P, Mennucci B, Adamo C (2013) On the metric of charge transfer molecular excitations: a simple chemical descriptor. J Chem Theory Comput 9:3118–3126

    Article  CAS  PubMed  Google Scholar 

  51. Zhao G-J, Han K-L (2012) Hydrogen bonding in the electronic excited state. Acc Chem Res 45:404–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Victor V. Kostjukov.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7377 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostjukov, V.V. Excitation of neutral red dye in aqueous media: comparative theoretical analysis of neutral and cationic forms. J Mol Model 28, 103 (2022). https://doi.org/10.1007/s00894-022-05098-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05098-8

Keywords

Navigation