Skip to main content
Log in

A DFT analysis of electronic, reactivity, and NLO responses of a reactive orange dye: the role of Hartree-Fock exchange corrections

  • Review
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An experimental and theoretical study based on DFT/TD-DFT approximations is presented to understand the nature of electronic excitations, reactivity, and nonlinear optical (NLO) properties of reactive orange 16 dye (RO16), an azo chromophore widely used in textile and pharmacological industries. The results show that the solvent has a considerable influence on the electronic properties of the material. According to experimental results, the absorption spectrum is formed by four intense transitions, which have been identified as \(\pi \rightarrow \pi ^{*}\) states using TD-DFT calculations. However, the TD-DFT results reveal a weak \(n\rightarrow \pi ^{*}\) in the low-lying spectral region. Continuum models of solvation indicate that these states suffer from bathochromic (ca. 15 nm) and hypsochromic shifts (ca. 4 nm), respectively. However, the expected blue shift for the absorption \(n\rightarrow \pi ^{*}\) is only described using long-range or dispersion-corrected DFT methods. RO16 is classified as a strong electrophilic system, with electrophilicity ω > 1.5 eV. Concerning the nucleophilicity parameter (N), from vacuum to solvent, the environment is active and changes the nucleophilic status from strong to moderate nucleophile (2.0 ≤ N ≤ 3.0 eV). The results also suggest that all electrical constants are strongly dependent on long-range and Hartree-Fock exchange contributions, and the absence of these interactions gives results far from reality. In particular, the results for the NLO response show that the chromophore presents a potential application in this field with a low refractive index and first hyperpolarizability ca. 214 times bigger than the value usually reported for urea (β = 0.34 × 10− 30 esu), which is a standard NLO material. Concerning the solvent effects, the results indicate that the polarizability increases \(\sim 20 \times 10^{-24}\) esu from gas to solvent while the first hyperpolarizability is calculated as \(\sim 45 \times 10^{-30}\) esu, ca. 180%, regarding the vacuum. The results suggest RO16 is a potential compound in NLO applications.

The frontier molecular orbitals, and the inverse relation between the energy-gap (Egap) and the first hyperpolarizability (β)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118. https://doi.org/10.1103/PhysRevLett.7.118

    Article  Google Scholar 

  2. Lin PS, Shoji Y, Afraj SN, Ueda M, Lin C, Inagaki S, Endo T, Tung SH, Chen MC, Liu C, Higashihara T (2021) Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS Applied Materials &, Interfaces 13:31898. https://doi.org/10.1021/acsami.1c04404

    Article  CAS  Google Scholar 

  3. Sebastian A, Pendurthi R, Choudhury TH, Redwing JM, Das S (2021) Benchmarking monolayer MoS2 and WS2 field-effect transistors, Nature Communications 693:12. https://doi.org/10.1038/s41467-020-20732-w

  4. Belaidi H, Belaidi S, Katan C, Latouche C, Boucekkine A (2016) Vibronic coupling to simulate the phosphorescence spectra of Ir(III)-based OLED systems: TD-DFT results meet experimental data, Journal of Molecular Modeling 265:22. https://doi.org/10.1007/s00894-016-3132-8

  5. Uzun K, Sayın S, Tamer O, Çevik U (2021) Comparison of charge transport and opto-electronic properties of pyrene and anthracene derivatives for OLED applications, Journal of Molecular Modeling 174:27. https://doi.org/10.1007/s00894-021-04793-2

  6. Bouzineb Y, Slimi A, Raftani M, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M, Bouachrine M (2020) Theoretical study of organic sensitizers based on 2, 6-diphenyl-4H-pyranylidene/1, 3, 4-oxadiazole for dye-sensitized solar cells, Journal of Molecular Modeling 346:26. https://doi.org/10.1007/s00894-020-04611-1

  7. Afzal Z, Hussain R, Khan MU, Khalid M, Iqbal J, Alvi MU, Adnan M, Ahmed M, Mehboob MY, Hussain M, Tariq CJ (2020) Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells, Journal of Molecular Modeling 137:26. https://doi.org/10.1007/s00894-020-04386-5

  8. Selvaraj ARK, Hayase S (2011) Molecular dynamics simulations on the aggregation behavior of indole type organic dye molecules in dye-sensitized solar cells. J Mol Model 18:2099. https://doi.org/10.1007/s00894-011-1230-1

    Article  PubMed  CAS  Google Scholar 

  9. Barboza BH, Gomes OP, Batagin-Neto A (2021) Polythiophene derivatives as chemical sensors: a DFT study on the influence of side groups, Journal of Molecular Modeling 17:27. https://doi.org/10.1007/s00894-020-04632-w

  10. Safonov AA, Rykova EA, Bagaturyants AA, Sazhnikov VA, Alfimov MV (2010) Atomistic simulations of materials for optical chemical sensors: DFT-d calculations of molecular interactions between gas-phase analyte molecules and simple substrate models. J Mol Model 17:1855. https://doi.org/10.1007/s00894-010-0882-6

    Article  PubMed  CAS  Google Scholar 

  11. Schneider T (2004) Nonlinear Optics in Telecommunications (Springer, Berlin, Heidelberg). https://doi.org/10.1007/978-3-662-08996-5

  12. Gao Z, Hao Y, Zheng M, Chen Y (2017) A fluorescent dye with large Stokes shift and high stability: synthesis and application to live cell imaging. RSC Advances 7:7604. https://doi.org/10.1039/c6ra27547h

    Article  CAS  Google Scholar 

  13. Huang K, Jiao X, Liu C, Wang Q, Qiu X, He S, Zhao L, Zeng X (2017) Synthesis of a novel π-extended hybrid rhodamine dye with far-red fluorescence emission and its application in bioimaging. Dye Pigment 145:561. https://doi.org/10.1016/j.dyepig.2017.06.047

    Article  CAS  Google Scholar 

  14. Orozco-Gonzalez Y, Bistafa C, Canuto S (2013) Solvent effect on the stokes shift and on the nonfluorescent decay of the daidzein molecular system. The Journal of Physical Chemistry A 117:4404. https://doi.org/10.1021/jp4021646

    Article  CAS  PubMed  Google Scholar 

  15. Coutinho K, Canuto S (2003) The sequential Monte Carlo-quantum mechanics methodology. Application to the solvent effects in the Stokes shift of acetone in water. Journal of Molecular Structure:, THEOCHEM 632:235. https://doi.org/10.1016/s0166-1280(03)00302-6

    Article  CAS  Google Scholar 

  16. Manzoni V, Gester R, da Cunha AR, Andrade-Filho T, Gester R (2021) Solvent effects on Stokes shifts, and NLO response of thieno[3, 4-b]pyrazine: A comprehensive QM/MM investigation. J Mol Liq 335:115996. https://doi.org/10.1016/j.molliq.2021.115996

    Article  CAS  Google Scholar 

  17. Shruthi C, Ravindrachary V, Guruswamy B, Prasad DJ, Goveas J, Kumara K, Lokanath N (2021) Molecular structure, Hirshfeld surface and density functional theoretical analysis of a NLO active chalcone derivative single crystal—a quantum chemical approach. J Mol Struct 1228:129739. https://doi.org/10.1016/j.molstruc.2020.129739

    Article  CAS  Google Scholar 

  18. Zhao T, Wang C, Hu S, Ji S, Hu C, Xu K, Teng B (2021) Structural design and characterization of a chalcone derivative crystal DAMO with strong SHG efficiency for NLO applications. Opt Mater 112:110765. https://doi.org/10.1016/j.optmat.2020.110765

    Article  CAS  Google Scholar 

  19. Guo H, Jiang L, Huang K, Wang R, Liu S, Li Z, Rong X, Dong G (2021) Unsymmetric squaraine for narrow band green-selective organic photodetectors. Org Electron 92:106122. https://doi.org/10.1016/j.orgel.2021.106122

    Article  CAS  Google Scholar 

  20. Xiao Q, Zhu X, He J, Xie M, Zhou Y, Li Z (2021) Photostable squaraine dimers for organic solar cells with a high open circuit voltage exceeding 1.0 v. Dye Pigment 194:109633. https://doi.org/10.1016/j.dyepig.2021.109633

    Article  CAS  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864. https://doi.org/10.1103/physrev.136.b864

    Article  Google Scholar 

  22. Kohn W, Sham LJ (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev 140:A1133. https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  23. Pimenta ACM, Andrade-Filho T, Manzoni V, Nero JD, Gester R (2019) Giant values obtained for first hyperpolarizabilities of methyl orange: a DFT investigation, Theor Chem. Acc. 138. https://doi.org/10.1007/s00214-018-2406-x

  24. Gester R, Torres A, Bistafa C, Arau̇jo RS, da Silva TA, Manzoni V (2020) Theoretical study of a recently synthesized azo dyes useful for OLEDs. Mater Lett 280:128535. https://doi.org/10.1016/j.matlet.2020.128535

    Article  CAS  Google Scholar 

  25. Gester R, Torres A, da Cunha AR, Andrade-Filho T, Manzoni V (2021) Theoretical study of thieno[3, 4-b]pyrazines derivatives with enhanced NLO response, Chemical Physics Letters 781: 138976. https://doi.org/10.1016/j.cplett.2021.138976

  26. Andrade-Filho T, Silva T, Belo E, Raiol A, de Oliveira RV, Marinho PS, Bitencourt HR, Marinho AM, da Cunha AR, Gester R (2021) Insights and modelling on the nonlinear optical response, reactivity, and structure of chalcones and dihydrochalcones. J Mol Struct 1246:131182. https://doi.org/10.1016/j.molstruc.2021.131182

    Article  CAS  Google Scholar 

  27. Raiol A, da Cunha AR, Manzoni V, Andrade-Filho T, Gester R (2021) Solvent enhancement and isomeric effects on the NLO properties of a photoinducedcis-trans azomethine chromophore: A sequential MC/QM study, Journal of Molecular Liquids 340:116887. https://doi.org/10.1016/j.molliq.2021.116887

  28. Manzoni V, Modesto-Costa L, Nero JD, Andrade-Filho T, Gester R (2019) Strong enhancement of NLO response of methyl orange dyes through solvent effects: A sequential Monte carlo/DFT investigation. Opt Mater 94:152. https://doi.org/10.1016/j.optmat.2019.05.018

    Article  CAS  Google Scholar 

  29. Khan MN, Parmar DK, Das D (2021) Recent applications of azo dyes: a paradigm shift from medicinal chemistry to biomedical sciences. Mini-Rev Med Chem 21:1071. https://doi.org/10.2174/1389557520999201123210025

    Article  CAS  PubMed  Google Scholar 

  30. Albelwi FF, Al-anazi M, Naqvi A, Hritani ZM, Okasha RM, Afifi TH, Hagar M (2021) Novel oxazolones incorporated azo dye: Design, synthesis photophysical-DFT aspects and antimicrobial assessments with In-silico and In-vitro surveys. Journal of Photochemistry and Photobiology 7:100032. https://doi.org/10.1016/j.jpap.2021.100032

    Article  Google Scholar 

  31. El-Sayed Y, Gaber M, El-Wakeil N, ahmed abdelaziz A (2021) El-nagar, Metal complexes of azo mesalamine drug: Synthesis, characterization, and their application as an inhibitor of pathogenic fungi, Applied Organometallic Chemistry 35:e6290. https://doi.org/10.1002/aoc.6290

  32. Malakootian M, Heidari MR (2018) Reactive orange 16 dye adsorption from aqueous solutions by psyllium seed powder as a low-cost biosorbent: kinetic and equilibrium studies, Applied Water Science 8:212. https://doi.org/10.1007/s13201-018-0851-2

  33. Hanafi MF, Sapawe N (2020) A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today:, Proceedings 31:A141. https://doi.org/10.1016/j.matpr.2021.01.258

    Google Scholar 

  34. Abdulhameed AS, Mohammad AT, Jawad AH (2019) Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. Journal of Cleaner Production 232:43. https://doi.org/10.1016/j.jclepro.2019.05.291

    Article  CAS  Google Scholar 

  35. Alam M, Khan AU, Alam M, Ahmad S (2019) Spectroscopic (FTIR, FT-raman, 1H NMR and UV–vis) and DFT/TD-DFT studies on cholesteno [4,6-b,c]-2, 5-dihydro-1, 5-benzothiazepine. J Mol Struct 1178:570. https://doi.org/10.1016/j.molstruc.2018.10.063

    Article  CAS  Google Scholar 

  36. Abbas H, Shkir M, AlFaify S (2019) Density functional study of spectroscopy, electronic structure, linear and nonlinear optical properties of L-proline lithium chloride and L-proline lithium bromide monohydrate: For laser applications. Arab J Chem 12:2336. https://doi.org/10.1016/j.arabjc.2015.02.011

    Article  CAS  Google Scholar 

  37. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  38. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21++G basis set for first-row elements, Li-F. J Comput Chem 4:294. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  39. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. a polarization-type basis set for second-row elements. The Journal of Chemical Physics 77:3654. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  40. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. a basis set for correlated wave functions. The Journal of Chemical Physics 72:650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  41. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, z = 11–18. The Journal of Chemical Physics 72:5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  42. Spitznagel GW, Clark T, von Raguė Schleyer P., Hehre WJ (1987) An evaluation of the performance of diffuse function-augmented basis sets for second row elements, Na-Cl. J Comput Chem 8:1109. https://doi.org/10.1002/jcc.540080807

    Article  CAS  Google Scholar 

  43. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  44. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  45. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. The journal of chemical physics 125:194101. https://doi.org/10.1063/1.2370993

    Article  PubMed  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2007) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar DG (2006) Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States, and better performance on average than b3LYP for ground states. The Journal of Physical Chemistry A 110:13126. https://doi.org/10.1021/jp066479k

    Article  CAS  PubMed  Google Scholar 

  48. Vijayaraj R, Subramanian V, Chattaraj PK (2009) Comparison of global reactivity descriptors calculated using various density functionals: a QSAR perspective. J Chem Theory Comput 5:2744. https://doi.org/10.1021/ct900347f

    Article  CAS  PubMed  Google Scholar 

  49. Lescos L, Sitkiewicz SP, Beaujean P, Blanchard-Desce M, Champagne B, Matito E, Castet F (2020) Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar merocyanines. Phys Chem Chem Phys 22:16579. https://doi.org/10.1039/d0cp02992k

    Article  CAS  PubMed  Google Scholar 

  50. Stewart JJP (2007) Optimization of parameters for semiempirical methods v: Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu K, Snijders J.G., Lin C. (2002) Reinvestigation of Hydrogen Bond Effects on the Polarizability and Hyperpolarizability of Urea Molecular Clusters. The Journal of Physical Chemistry B 106(35):8954. https://doi.org/10.1021/jp014181i

    Article  CAS  Google Scholar 

  52. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 24(6):669. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  53. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chemical Reviews 941(1):195. https://doi.org/10.1021/cr00025a007

    Google Scholar 

  54. Lorentz HA (1880) Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der körperdichte. Ann Phys 245:641. https://doi.org/10.1002/andp.18802450406

    Article  Google Scholar 

  55. Lorenz L (1880) Ueber die Refractionsconstante. Ann Phys 247:70. https://doi.org/10.1002/andp.18802470905

    Article  Google Scholar 

  56. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126:1977. https://doi.org/10.1103/PhysRev.126.1977

    Article  CAS  Google Scholar 

  57. Bensiradj NEH, Dekhira A, Zouaghi N, Ouamerali O (2020) DFT and TDDFT study of chemical reactivity and spectroscopic properties of M(TePh)2 [TMEDA] M=Zn, Cd, and Hg complexes. Struct Chem 31(4):1493. https://doi.org/10.1007/s11224-020-01509-9

    Article  CAS  Google Scholar 

  58. Domingo LR, Chamorro E, Pėrez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. a theoretical study‡. The Journal of Organic Chemistry 73:4615. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  59. Jaramillo P, Domingo LR, Chamorro E, Pėrez P (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. Journal of Molecular Structure:, THEOCHEM 865:68. https://doi.org/10.1016/j.theochem.2008.06.022

    Article  CAS  Google Scholar 

  60. Hazarika R, Kalita B (2021) Elucidating the therapeutic activity of selective curcumin analogues: DFT-based reactivity analysis. Struct Chem 32:1701. https://doi.org/10.1007/s11224-021-01745-7

    Article  CAS  Google Scholar 

  61. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  62. Manna D, Ghanty TK (2012) Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory. Phys Chem Chem Phys 14:11060. https://doi.org/10.1039/c2cp40083a

    Article  CAS  PubMed  Google Scholar 

  63. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: carbonyl compounds. The Journal of Physical Chemistry A 102:3746. https://doi.org/10.1021/jp973450v

    Article  CAS  Google Scholar 

  64. Roy RK, de Proft F, Geerlings P (1998) Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. The Journal of Physical Chemistry A 102:7035. https://doi.org/10.1021/jp9815661

    Article  CAS  Google Scholar 

  65. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 24(6):669. https://doi.org/10.1002/jcc.10189

    Article  CAS  PubMed  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. J.A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian Inc. Wallingford CT

  67. O’boyle NM, Tenderholt AL, Langner KM (2008) cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry 29(5):839. https://doi.org/10.1002/jcc.20823

    Article  PubMed  CAS  Google Scholar 

  68. Mitrovic J, Radovic M, Bojic D, Andjelkovic T, Purenovic M, Bojic A (2012) Decolorization of textile azo dye Reactive Orange 16 with UV/H2O2 process. Journal of the Serbian Chemical Society 77:465. https://doi.org/10.2298/jsc110216187m

    Article  CAS  Google Scholar 

  69. Gomes L, Miwa DW, Malpass GRP, Motheo AJ (2011) Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. J Braz Chem Soc 22:1299. https://doi.org/10.1590/s0103-50532011000700015

    Article  CAS  Google Scholar 

  70. Catanho M, Malpass GRP, de Jesus Motheo A (2006) Avaliaċȧo dos tratamentos eletroquímico e fotoeletroquímico na degradaċȧo de corantes tėxteis. Química Nova 29:983. https://doi.org/10.1590/s0100-40422006000500018

    Article  CAS  Google Scholar 

  71. Damasceno MVA, Manzoni V, Modesto-Costa L, Moura GM, Nero JD, Torres A, Gester R (2019) Solvent effects on low-lying absorptions and vibrational spectra of thieno[3, 4-b]pyrazines:, the role of unconventional C–H⋯N bonds. Chemical Papers 73:1519. https://doi.org/10.1007/s11696-019-00703-2

    Article  CAS  Google Scholar 

  72. Reichardt C, Welton T (2010) Solvent Effects on the Absorption Spectra of Organic Compounds. Wiley, NY. chap. 6, p 359–424. https://doi.org/10.1002/9783527632220.ch6

    Book  Google Scholar 

  73. Gester R, Damasceno MV, Canuto S, Manzoni V (2020) A theoretical study of the magnetic shielding of 15N of formamide in liquid water. J Mol Liq 320:114415. https://doi.org/10.1016/j.molliq.2020.114415

    Article  CAS  Google Scholar 

  74. Gester R, Georg HC, Fonseca TL, Provasi PF, Canuto S (2012) .. In: Marco Antonio Chaer Nascimento (Springer Berlin Heidelberg). p 117–124, https://doi.org/10.1007/978-3-642-41163-2_11

  75. Gester R, Bistafa C, Georg HC, Coutinho K, Canuto S (2013) Theoretically describing the 17O magnetic shielding constant of biomolecular systems: uracil and 5-fluorouracil i water environment, Theoretical Chemistry Accounts 133:1424. https://doi.org/10.1007/s00214-013-1424-y

  76. Valverde C, Osȯrio F. A., Fonseca TL, Baseia B (2018) DFT Study of third-order nonlinear susceptibility of a chalcone crystal. Chemical Physics Letters 706:170–174. https://doi.org/10.1016/j.cplett.2018.06.001

    Article  CAS  Google Scholar 

  77. Hodgkinson I, hong Wu Q, Hazel J (1998) Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl Opt 37:2653. https://doi.org/10.1364/ao.37.002653

    Article  CAS  PubMed  Google Scholar 

  78. Wu K, Snijders JG, Lin C (2002) Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters. The Journal of Physical Chemistry B 106:8954. https://doi.org/10.1021/jp014181i

    Article  CAS  Google Scholar 

  79. Yu GT, Chen W, Gu FL, Aoki Y (2009) Theoretical study on nonlinear optical properties of the Li+[calix[4]pyrrole]Li-dimer, trimer and its polymer with diffuse excess electrons, Journal of Computational Chemistry p NA–NA 31:863–870. https://doi.org/10.1002/jcc.21373

  80. Muhammad S, Al-Sehemi AG, Su Z, Xu H, Irfan A, Chaudhry AR (2017) First principles study for the key electronic, optical and nonlinear optical properties of novel donor-acceptor chalcones. J Mol Graph Model 72:58. https://doi.org/10.1016/j.jmgm.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  81. Muhammad S, Al-Sehemi AG, Irfan A, Chaudhry AR, Gharni H, AlFaify S, Shkir M, Asiri AM (2016) The impact of position and number of methoxy group(s) to tune the nonlinear optical properties of chalcone derivatives: a dual substitution strategy Journal of Molecular Modeling 22:73. https://doi.org/10.1007/s00894-016-2946-8

  82. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. The Journal of Chemical Physics 66:2664. https://doi.org/10.1063/1.434213

    Article  CAS  Google Scholar 

  83. Zhang L, Xu K (2019) Understanding substitution effects on dye structures and optoelectronic properties of molecular halide perovskite Cs4MX6 (M=Pb Sn, Ge; X= Br, I, Cl). J Mol Graph Model 91:172. https://doi.org/10.1016/j.jmgm.2019.06.009

    Article  CAS  PubMed  Google Scholar 

  84. Ferreira DF, Oliveira WD, Belo E, Gester R, Siqueira MR, Neto AM, Nero JD (2020) Electron scattering processes in steroid molecules via NEGF-DFT: the opening of conduction channels by central oxygen. J Mol Graph Model 107755:101. https://doi.org/10.1016/j.jmgm.2020.107755

    Google Scholar 

  85. Jogender Badhani B, Mandeep kakkar R (2020) A DFT-D2 study on the adsorption of phosgene derivatives and chloromethyl chloroformate on pristine and Fe4-decorated graphene. Journal of Molecular Graphics and Modelling 101:107754. https://doi.org/10.1016/j.jmgm.2020.107754

    Article  PubMed  CAS  Google Scholar 

  86. Rodrigues AM, Palheta-Ju̇nior A. R., Pinheiro MSS, Marinho AMR, Chaves-Neto AMJ, Gester R, Andrade-Filho T (2020) Encapsulation ability of silicon carbide and boron nitride nanotubes for spilanthol molecule. J. Nanostruc. Chem. 11:203. https://doi.org/10.1007/s40097-020-00359-5

    Article  CAS  Google Scholar 

  87. de Souza Freitas HA, Neto AMC, de Sousa FF, Amorim RG, Gester R, Stoyanov SR, Rocha AR, Andrade-Filho T (2021) Hydration-dependent band gap tunability of self-assembled phenylalanyl tryptophan nanotubes. Phys E: Low-Dimens Syst Nanostructures 134:114910. https://doi.org/10.1016/j.physe.2021.114910

    Article  CAS  Google Scholar 

  88. Santana E, Possa R, Novais A, Manzoni V, Novais E, Martins T, Gester R, Andrade-Filho T (2021) Adsorption study of 4-nitrophenol onto kaolinite (001) surface: A van der Waals density functional study. Mater Chem Phys 271:124887. https://doi.org/10.1016/j.matchemphys.2021.124887

    Article  CAS  Google Scholar 

  89. Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. The Journal of Physical Chemistry A 108(32):6661. https://doi.org/10.1021/jp048522e

    Article  CAS  Google Scholar 

  90. Gupta K, Ghanty TK, Ghosh SK (2012) Polarizability, Ionization Potential, and Softness of Water and Methanol Clusters: An Interrelation. The Journal of Physical Chemistry A 116(25):6831. https://doi.org/10.1021/jp3048357

    Article  CAS  PubMed  Google Scholar 

  91. Domingo LR, Aurell M, Pėrez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in diels–alder reactions. Tetrahedron 58:4417. https://doi.org/10.1016/s0040-4020(02)00410-6

    Article  CAS  Google Scholar 

Download references

Funding

Sávio Fonseca, and Regina Pereira have been supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Lucas Modesto-Costa has been supported by FAPESPA (Fundação Amazônica de Amparo a Estudos e Pesquisas). Francisco A. O. Carvalho and Tarciso Andrade-Filho have been supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). Antônio R. da Cunha has been supported by FAPEMA (Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Gester.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Supplementary information

The online version contains supplementary material available at https://doi.org/10.1007/s00894-022-05035-9.

Author contribution

Sávio Fonseca: electronic structure calculations. Lucas Santos: experimental data acquisition. Regina Pereira: experimental data acquisition. Lucas Modesto-Costa: electronic structure calculations. Antônio R. da Cunha: formal analysis, writing and original draft. Marcelo R.S. Siqueira: formal analysis, writing an original draft. Francisco A. O. Carvalho: formal analysis, writing an original draft. Tarciso Andrade-Filho: writing and original draft, writing a review and editing. Rodrigo Gester: writing an original draft, writing a review and editing, supervision.

Availability of data and material

Not applicable

Code availability

Not applicable

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, S., Santos, L., Pereira, R. et al. A DFT analysis of electronic, reactivity, and NLO responses of a reactive orange dye: the role of Hartree-Fock exchange corrections. J Mol Model 28, 85 (2022). https://doi.org/10.1007/s00894-022-05035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05035-9

Keywords

Navigation