Skip to main content
Log in

Theoretical investigation on the improper hydrogen bond in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH3, H2O, and H2S) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature of H-bonds in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH3, H2O, and H2S) complexes was studied. For this aim, the structure of isolated κ-carrabiose was optimized using three global hybrids functional: B3LYP, PBE0, and M06-2X combined with 6-311G** basis set. Subsequently, the κ-carrabiose in the presence of HF, HCl, HBr, NH3, H2O, and H2S was optimized using the CBS-4 M method. NBO analyses were then carried out at the MP2/6-311G** level of theory. A particular interest was focused on C(18)―H(34)⋯Y bond. The results reveal that the C(18)―H(34)⋯Y bond is an improper H-bond since a significant contraction of C(18)―H(34) was observed during the complexation leading to a significant blueshifted stretching frequency. The NBO analyses have shown that the formation of the improper H-bonds C(18)―H(34)⋯Y (Y = F, Cl, Br, N, O, and S) is principally due to the increase of the s-character of the hybrid orbital in carbon atom (rehybridization) in κ-carrabiose⋯Y complexes. Regarding the polarization, it was proved that more the H-bond center (carbon in C(18)―H(34)⋯Y) becomes less positive, the hydrogen more positive, and Y more negative; more the contraction of the C(18)―H(34) bond is important. It was also confirmed for intramolecular H-bonds in κ-carrabiose⋯Y complexes that the rehybridization is responsible for H-bonds nature either proper or improper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The authors certify that all data and material are available.

Code availability

Gaussian.

References

  1. Huggins ML (1922) Atomic structure. Science 55:459–460

    Article  CAS  PubMed  Google Scholar 

  2. Pauling LJ (1931) The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structures of molecules. Am Chem Soc 53:1367–1400

    Article  CAS  Google Scholar 

  3. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  4. Jeffrey GA (1997) An introduction to hydrogen bond. Oxford University Press, New York

    Google Scholar 

  5. Desiraju G, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New York

    Google Scholar 

  6. Kollman PA, Allen LC (1972) Theory of the hydrogen bond. Chem Rev 72:283–303

    Article  CAS  Google Scholar 

  7. Gordon MS, Jensen JH (1996) Understanding the hydrogen bond using quantum chemistry. Acc Chem Res 29:536–543

    Article  CAS  Google Scholar 

  8. Morokuma K (1977) Why do molecules interact? The origin of electron-donor acceptor complexes, hydrogen bonding and proton affinity. Acc Chem Res 10:294–300

    Article  CAS  Google Scholar 

  9. Liu S, Dykstra CEJ (1986) A theory of vibrational transition frequency shifts due to hydrogen bonding. Phys Chem 90(14):3097–3103

    Article  CAS  Google Scholar 

  10. Bader RFW (1964) A model for the hydrogen bond and proton transfer reactions. Can J Chem 42:1822–1834

    Article  CAS  Google Scholar 

  11. Ratajczak HJ (1972) Charge-transfer properties of the hydrogen bond. I. Theory of the enhancement of dipole moment of hydrogen-bonded systems. Phys Chem 76:3000–3004

    Article  CAS  Google Scholar 

  12. Allerhand A, Schleyer PvR (1963) A survey of C-H groups as proton donors in hydrogen bonding. J Am Chem Soc 85:1715–1723

    Article  CAS  Google Scholar 

  13. Sandorfy C (1984) Vibrational spectra of hydrogen bonded systems in the gas phase. Top Curr Chem 120:41–84

    Article  CAS  Google Scholar 

  14. Zierkiewicz W, Jurečka P, Hobza P (2005) On differences between hydrogen bonding and improper blue-shifting hydrogen bonding. ChemPhysChem 6:609–617

    Article  CAS  PubMed  Google Scholar 

  15. Badger RM, Bauer SH (1937) Spectroscopic studies of the hydrogen bond. II. The shift of the O-H vibrational frequency in the formation of the hydrogen bond. J Chem Phys 5:839

    Article  CAS  Google Scholar 

  16. Nakamoto K, Margolis M, Rundel RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486

    Article  CAS  Google Scholar 

  17. Ojamae L, Hermansson K (1992) Water molecules in different crystal surroundings: Vibrational O-H frequencies from ab initio calculations. J Chem Phys 96:9035–9044

    Article  Google Scholar 

  18. Szczepaniak K, Tramer A (1967) Charge-transfer model and infrared spectra of hydrogen-bonded complexes of .pi.-electron donors. J Phys Chem 71:3035–3039

    Article  CAS  Google Scholar 

  19. Pinchas S (1957) Infrared absorption of aldehydic C-H group. Anal Chem 29:334–339

    Article  CAS  Google Scholar 

  20. Pinchas S (1963) Intramolecular hydrogen bonding in O-nitrobenzaldehyde and related compounds. J Phys Chem 67:1862–1865

    Article  CAS  Google Scholar 

  21. Satonaka H, Abe K, Hirota M (1987) 13C NMR spectra of substituted 2-thiophenecarboxylic acid methyl esters and MNDO calculations. Bull Chem Soc Jpn 60:953–961

    Article  CAS  Google Scholar 

  22. Budesinsky M, Fiedler P, Arnold Z (1989) Triformylmethane: an efficient preparation, some derivatives, and spectra. Synthesis 11:858–860

    Article  Google Scholar 

  23. Boldeskul IE, Tsymbal IF, Ryltsev EV, Latajka Z, Barnes AJ (1997) Reversal of the usual ν HD spectral shift of haloforms in some hydrogen-bonded complexes. J Mol Struct 37:167–171

    Article  Google Scholar 

  24. Caminati W, Melandri S, Moreschini P, Favero PG (1999) The C-F small middle dot small middle dot small middle dotH-C “anti-hydrogen bond” in the gas phase: microwave structure of the difluoromethane dimer. Angew Chem Int Ed 38:2924–2925

    Article  CAS  Google Scholar 

  25. Mizuno K, Imafuji S, Ochi T, Ohta T, Maeda SJ (2000) Hydration of the CH groups in dimethyl sulfoxide probed by NMR and IR. Phys Chem B 104:11001–11005

    Article  CAS  Google Scholar 

  26. Goutev N, Matsuura H (2001) Hydrogen bonding in chloroform solutions of ethylenedioxy ethers. Spectroscopic Evidence of Bifurcated Hydrogen Bonds. J Phys Chem A 105:4741–4748

    Article  CAS  Google Scholar 

  27. Reimann B, Buchhold K, Vaupel S, Brutschy BZ (2001) Blue-shift in the frequencies of the CH stretches of chloro- and fluoroform induced by C-H...π hydrogen bonding with benzene derivatives: the influence of electron donating and withdrawing substituents. Phys Chem 215:777–793

    CAS  Google Scholar 

  28. Afonin AV, Andriyankov MA (1988) Zh Org Khim 24:1034

    CAS  Google Scholar 

  29. Cubero E, Orozco M, Hobza P, Luque FJ (1999) Hydrogen bond versus anti-hydrogen bond: a comparative analysis based on the electron density topology. J Phys Chem A 103:6394–6401

    Article  CAS  Google Scholar 

  30. van der Veken BJ, Herrebout WA, Szostak R, Shchepkin DN, Havlas Z, Hobza P (2001) The nature of improper, blue-shifting hydrogen bonding verified experimentally. J Am Chem Soc 123:12290–12293

    Article  PubMed  CAS  Google Scholar 

  31. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  PubMed  Google Scholar 

  32. Zierkiewicz W, Czarnik-Matusewicz B, Michalska D (2011) Blue shifts and unusual intensity changes in the infrared spectra of the enflurane···acetone complexes: spectroscopic and theoretical studies. J Phys Chem A 115:11362–11368

    Article  CAS  PubMed  Google Scholar 

  33. Zierkiewicz W, Zalesny R, Hobza P (2013) On the nature of unusual intensity changes in the infrared spectra of the enflurane⋯acetone complexes. Phys Chem Chem Phys 15:6001–6007

    Article  CAS  PubMed  Google Scholar 

  34. Trudeau GT, Dumas JM, Dupuis P, Guerin M, Sandorfy C (1980) Intermolecular interactions and anesthesia: infrared spectroscopic studies. Top Curr Chem 93:91–125

    Article  CAS  PubMed  Google Scholar 

  35. Nishio M, Hirota M, Umezawa Y (1998) The CH/π interaction. Evidence Nature and Consequences. Wiley-VCH, New York

    Google Scholar 

  36. Hobza P, Špirko V, Selzle HL, Schlag EW (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102:2501–2504

    Article  CAS  Google Scholar 

  37. Hobza P, Špirko V, Havlas Z, Buchhold K, Reimann B, Barth HD, Brutschy B (1999) Anti-hydrogen bond between chloroform and fluorobenzene. Chem Phys Lett 299:180–186

    Article  CAS  Google Scholar 

  38. Reimann B, Buchhold K, Vaupel S, Brutschy B, Havlas Z, Špirko V, Hobza P (2001) Improper, blue-shifting hydrogen bond between fluorobenzene and fluoroform. J Phys Chem A 105:5560–5566

    Article  CAS  Google Scholar 

  39. Solimannejad M, Gharabaghi M, Scheiner S (2011) SH···N and SH···P blue-shifting H-bonds and N···P interactions in complexes pairing HSN with amines and phosphines. J Chem Phys 134:024312 ((1-6))

    Article  PubMed  CAS  Google Scholar 

  40. Tuttle T, Graefenstein J, Wu A, Kraka E, Cremer D (2004) Analysis of the NMR spin−spin coupling mechanism across a H−bond: nature of the H-bond in proteins. J Phys Chem B 108:1115–1129

    Article  CAS  Google Scholar 

  41. Brauer B, Gerber RB, Kabelac M, Hobza P, Bakker JM, Riziq AGA, de Vries MS (2005) Vibrational spectroscopy of the G...C base pair: experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings. J Phys Chem A 109:6974–6974

    Article  CAS  PubMed  Google Scholar 

  42. Li XS, Liu L, Schlegel HB (2002) On the physical origin of blue-shifted hydrogen bonds. J Am Chem Soc 124:9639–9647

    Article  CAS  PubMed  Google Scholar 

  43. Fan JM, Liu L, Guo QX (2002) Substituent effects on the blue-shifted hydrogen bonds. Chem Phys Lett 365:464–472

    Article  CAS  Google Scholar 

  44. McDowell SAC, Buckingham AD (2005) On the correlation between bond-length change and vibrational frequency shift in hydrogen-bonded complexes: a computational study of Y···HCl dimers (Y = N2, CO, BF). J Am Chem Soc 127:15515–15520

    Article  CAS  PubMed  Google Scholar 

  45. Szostak R (2011) Blue or red ΔνXH complexation shift in X-H⋯CO2 hydrogen-bonded complexes. Chem Phys Lett 516:166–170

    Article  CAS  Google Scholar 

  46. Raghavendra B, Arunan E (2007) Unpaired and σ bond electrons as H, Cl, and Li bond acceptors: an anomalous one-electron blue-shifting chlorine bond. J Phys Chem A 111:9699–9706

    Article  CAS  PubMed  Google Scholar 

  47. Alabugin IV, Manoharan M, Weinhold FA (2004) Blue-shifted and red-shifted hydrogen bonds in hypervalent rare-gas FRg−H···Y sandwiches. J Phys Chem A 108:4720–4730

    Article  CAS  Google Scholar 

  48. Lignell A, Khriachtchev L, Pettersson M, Räsänen M (2002) Large blueshift of the H-Kr stretching frequency of HKrCl upon complexation with N2. J Chem Phys 117:961–964

    Article  CAS  Google Scholar 

  49. McDowell SAC (2003) Blue-shifting hydrogen bonding in N2⋯HKrF. J Chem Phys 118:7283–7287

    Article  CAS  Google Scholar 

  50. Hobza P, Havlas Z (1999) The fluoroform⋯ethylene oxide complex exhibits a C-H⋯O anti-hydrogen bond. Chem Phys Lett 303:447–452

    Article  CAS  Google Scholar 

  51. Zierkiewicz W, Michalska D, Havlas Z, Hobza P (2002) Study of the nature of improper blue-shifting hydrogen bonding and standard hydrogen bonding in the X3CH···OH2 and XH···OH2 complexes (X=F, Cl, Br, I): a correlated ab initio study. ChemPhysChem 3:511–518

    Article  CAS  PubMed  Google Scholar 

  52. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH···O interaction: is it a true hydrogen bond? J Am Chem Soc 121:9411–9422

    Article  CAS  Google Scholar 

  53. Scheiner S, Kar T, Gu Y (2001) Strength of the CαH··O hydrogen bond of amino acid residues. J Biol Chem 276:9832–9837

    Article  CAS  PubMed  Google Scholar 

  54. Dykstra CE (1988) Intermolecular electrical interaction: a key ingredient in hydrogen bonding. Acc Chem Res 21:355–361

    Article  CAS  Google Scholar 

  55. Qian WL, Krimm S (2005) Limitations of the molecular multipole expansion treatment of electrostatic interactions for C−H···O and O−H···O hydrogen bonds and application of a general charge density approach. J Phys Chem A 109:5608–5618

    Article  CAS  PubMed  Google Scholar 

  56. Bent H (1961) An appraisal of valence-bond structures and hybridization in compounds of the first-row elements. Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  57. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

    Article  CAS  PubMed  Google Scholar 

  58. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  59. Joseph J, Jemmis ED (2007) Red-, Blue-, or No-shift in hydrogen bonds: a unified explanation. J Am Chem Soc 129:4620–4532

    Article  CAS  PubMed  Google Scholar 

  60. Grabowski SJ (2011) Red- and blue-shifted hydrogen bonds: the bent rule from quantum theory of atoms in molecules perspective. J Phys Chem A 115:12789–12799

    Article  CAS  PubMed  Google Scholar 

  61. Moir A, Smith DA (1990) The genetics of bacterial spore germination. J Annu Rev Microbiol 44:531–553

    Article  CAS  Google Scholar 

  62. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  63. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  64. Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036

    Article  CAS  Google Scholar 

  65. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  66. Afonin AV, Vashchenko AV (2010) DFT prediction of anomalously large blue shift of the C-H stretching frequency in 2-vinyloxypyridine and -quinoline due to the intramolecular C–H···N hydrogen bonding. J Mol Struct (THEOCHEM) 940:56–60

    Article  CAS  Google Scholar 

  67. Chandra AK, Parveen S, Das S, Zeegers-Huyskens T (2008) Blue shifts of the C-H stretching vibrations in hydrogen-bonded and protonated trimethylamine. Effect of hyperconjugation on bond properties. J Comput Chem 29:1490–1496

    Article  CAS  PubMed  Google Scholar 

  68. Xu Z, Li H, Wang C, Wu T, Han S (2004) Is the blue shift of C-H vibration in DMF–water mixture mainly caused by C–H⋯O interaction? Chem Phys Lett 394:405–409

    Article  CAS  Google Scholar 

  69. Zierkiewicz W, Jurecˇka P, Hobza P (2005) On differences between hydrogen bonding and improper blue-shifting hydrogen bonding. Chem Phys Chem 6:609–617

    Article  CAS  PubMed  Google Scholar 

  70. Fodil R, Sekkal-Rahal M, Sayede A (2017) Testing the CP-correction procedure with different DFT methods on H-bonding complexes of κ-carrabiose with water molecules. J Mol Model 23:31–40

    Article  PubMed  CAS  Google Scholar 

  71. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  PubMed  CAS  Google Scholar 

  72. Ochterski JW, Petersson GA, Montgomery JA (1996) A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J Chem Phys 104:2598–2619

    Article  CAS  Google Scholar 

  73. Montgomery JAM, Frisch J, Ochterski JW, Petersson GA (2000) A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  74. Bestaoui-Berrekhchi-Berrahma N, Sekkal-Rahal M, Derreumaux P, Yousfi N (2016) MP2 and DFT studies of β-D-neocarrabiose and β-D-neocarrabiose monohydrate. J Comput Theo Chem 1091:24–30

    Article  CAS  Google Scholar 

  75. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  76. Huang Z, Yu W, Lin Z (2006) Exploration of the full conformational landscapes of gaseous aromatic amino acid phenylalanine: an ab initio study. J Mol Struct (THEOCHEM). 758:195–202

    Article  CAS  Google Scholar 

  77. Sekkal M (1990) Utilisation spectrometrie IRTF et de la modélisation moléculaire à l’étude structurale des carraghénanes. Doctoral thesis, Université des sciences et techniques de Lille Flandres Artois

  78. Sekkal M, Legrand P (1993) A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm− 1 spectral range. Spectrochim Acta Part A 49:209–221

    Article  Google Scholar 

  79. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  80. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree–Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  81. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (THEOCHEM) 46:41–62

    Article  CAS  Google Scholar 

  82. Weinhold F, Carpenter JE (1988) The natural bond orbital Lewis structure concept for molecules, radicals, and radical ions. In: Naaman R, Vager Z (eds) The structure of small molecules and ions. Plenum, New York, pp 227–236

    Chapter  Google Scholar 

  83. Yousfi N, Sekkal-Rahal M, Sayede A, Springborg M (2010) Relaxed energetic maps of kappa-carrabiose: a DFT study. J Comput Chem 31:1312

    CAS  PubMed  Google Scholar 

  84. Bekri L, Zouaoui-Rabah M, Springborg M, Sekkal RM (2018) A structural DFT study of MM, GG, MG, and GM alginic acid disaccharides and reactivity of the MG metallic complexes. J Mol Model 24:312–324

    Article  PubMed  CAS  Google Scholar 

  85. Sekkal-Rahal M, Sekkal N, Kleb DC, Bleckmann P (2003) Structures and energies of D-galactose and galabiose conformers as calculated by ab initio and semiempirical methods. J Comput Chem 24:806–818

    Article  CAS  Google Scholar 

  86. Mo Y, Wang C, Guan L, Braïda B, Hiberty PC, Wu W (2014) On the nature of blueshifting hydrogen bonds. Chem Eur J 20:8444–8452

    Article  CAS  PubMed  Google Scholar 

  87. HyperChem® Release 7 for Windows, Hardware lock HyperChem Inc. Florida 32601 USA

  88. Špirko V, Hobza P (2006) Theoretical investigations into the blue-shifting hydrogen bond in benzene complexes. ChemPhysChem 7:640–643

    Article  PubMed  CAS  Google Scholar 

  89. Kryachko ES, Zeegers-Huyskens T (2002) Theoretical study of the CH···X- interaction of fluoromethanes and chloromethanes with fluoride, chloride, and hydroxide anions. J Phys Chem A 106:6832–6838

    Article  CAS  Google Scholar 

  90. Hobza P (2001) The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding. Phys Chem Chem Phys 3:2555–2556

    Article  CAS  Google Scholar 

Download references

Funding

The research related to this article was funded by the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekkal-Rahal Majda.

Ethics declarations

Ethics approval

All authors accepted to be represented by the corresponding authors.

Consent for publication

Positive.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachida, F., Adlane, S. & Majda, SR. Theoretical investigation on the improper hydrogen bond in κ-carrabiose⋯Y (Y = HF, HCl, HBr, NH3, H2O, and H2S) complexes. J Mol Model 27, 292 (2021). https://doi.org/10.1007/s00894-021-04904-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04904-z

Keywords

Navigation