Skip to main content
Log in

Testing the CP-correction procedure with different DFT methods on H-bonding complexes of κ-carrabiose with water molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Interaction of water molecules with κ-carrabiose disaccharide, within three H-bonding complexes, was investigated. Particular interest was focused on the way with which the BSSE correction has to be performed. Two strategies were used, either performing BSSE correction during or after optimization. For this aim, several DFT-functionals (hybrid GGA and hybrid meta-GGA) and 6–31 + G* basis set were considered. The results demonstrated the uselessness of including of BSSE-CP correction during optimization for all complexes. From a structural point of view, a proper H-bonding description was obtained using the PBE0 functional for all complexes. The basis set effect on the BSSE using B3LYP functional was also investigated. The reliability of B3LYP/6–31 + G** and B3LYP/6–31++G** models for the complexes involving one or two water molecules was reported while the use of B3LYP/6–311 + G** or B3LYP/6-311++G** levels was shown to be more appropriate for larger complexes equivalent to that involving three water molecules. CP-corrected interaction energies were demonstrated to be closer to CBS-4 M interaction energies than the uncorrected ones.

Functional and basis set effects on BSSE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walczak K, Friedrich J, Dolg M (2009) Chem Phys 365:38

    Article  CAS  Google Scholar 

  2. Sheng XW, Mentel L, Gritsenko OV, Baerends EJ (2011) J Comput Chem 32:2896

    Article  CAS  Google Scholar 

  3. Kestner NR (1968) J Chem Phys 48:252

    Article  CAS  Google Scholar 

  4. Jansen HB, Ros P (1969) Chem Phys Lett 3:140

    Article  CAS  Google Scholar 

  5. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  6. Liu B, McLean AD (1980) J Chem Phys 72:3418

    Article  CAS  Google Scholar 

  7. Liu B, McLean AD (1989) J Chem Phys 91:2348

    Article  CAS  Google Scholar 

  8. Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418

    Article  CAS  Google Scholar 

  9. Frisch MJ, Del Bene JE, Binkley JS, Schaefer HF (1986) J Chem Phys 84:2279

    Article  CAS  Google Scholar 

  10. Liedl KR (1998) J Chem Phys 108:3199

    Article  CAS  Google Scholar 

  11. Hunt SW, Leopold KR (2001) J Phys Chem A 105:5498

    Article  CAS  Google Scholar 

  12. Kobko N, Dannenberg JJ (2001) J Phys Chem A 105:1944

    Article  CAS  Google Scholar 

  13. Salvador P, Duran M, Dannenberg JJ (2002) J Phys Chem A 106:6883

    Article  CAS  Google Scholar 

  14. Valdes H, Sordo JA (2002) J Comput Chem 23:444

    Article  CAS  Google Scholar 

  15. Valdes H, Sordo JA (2002) J Phys Chem A 106:3690

    Article  CAS  Google Scholar 

  16. Ponti A, Mella M (2003) J Phys Chem A 107:7589

    Article  CAS  Google Scholar 

  17. Wieczorek R, Haskamp L, Dannenberg JJ (2004) J Phys Chem A 108:6713

    Article  CAS  Google Scholar 

  18. Alvarez-Idaboy JR, Galano A (2010) Theor Chem Accounts 126:75

    Article  CAS  Google Scholar 

  19. Varandas AJC (2010) J Phys Chem A 114:8505

    Article  CAS  Google Scholar 

  20. Mentel ŁM, Baerends EJ (2014) J Chem Theory Comput 10:252

    Article  CAS  Google Scholar 

  21. Wells BH, Wilson S (1983) Chem Phys Lett 101:429

    Article  CAS  Google Scholar 

  22. Valiron P, Mayer I (1997) Chem Phys Lett 275:46

    Article  CAS  Google Scholar 

  23. White JC, Davidson ER (1990) J Chem Phys 93:8029

    Article  CAS  Google Scholar 

  24. Mierzwicki K, Latajka Z (2003) Chem Phys Lett 380:654

    Article  CAS  Google Scholar 

  25. Faver JC, Zheng Z, Merz KM Jr (2011) J Chem Phys 135:144110

    Article  Google Scholar 

  26. Walczak K, Friedrich J, Dolg M (2011) J Chem Phys 135:134118

    Article  Google Scholar 

  27. Kruse H, Grimme S (2012) J Chem Phys 136:154101

    Article  Google Scholar 

  28. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    Article  CAS  Google Scholar 

  29. Salvador P, Simon S, Duran M, Dannenberg JJ (2000) J Chem Phys 113:5666

    Article  CAS  Google Scholar 

  30. Halkier A, Koch H, Jùrgensen P, Christiansen O, Beck Nielsen IM, Helgaker T (1997) Theor Chem Accounts 97:150

    Article  CAS  Google Scholar 

  31. Paizs B, Salvador P, Császár AG, Duran M, Suhai S (2001) J Comput Chem 22:196

    Article  CAS  Google Scholar 

  32. Lai CH, Chou PT (2007) J Comput Chem 28:1357

    Article  CAS  Google Scholar 

  33. Wang Y, Paulus B (2007) Chem Phys Lett 441:187

    Article  CAS  Google Scholar 

  34. Escudero D, Frontera A, Quiñonero D, Deya PM (2008) Chem Phys Lett 455:325

    Article  CAS  Google Scholar 

  35. Plumley JA, Dannenberg JJ (2011) J Comput Chem 32:1519

    Article  CAS  Google Scholar 

  36. Lu X, Shi H, Chen J, Ji D (2012) J Comput Theor Chem 982:34

    Article  CAS  Google Scholar 

  37. Roy D, Marianski M, Maitra NT, Dannenberg JJ (2012) J Chem Phys 137:134109

    Article  Google Scholar 

  38. Clarke C, Woods RJ, Gluska J, Cooper A, Nutley MA, Boons GJ (2001) J Am Chem Soc 123:12238

    Article  CAS  Google Scholar 

  39. Dashnau JL, Sharp KA, Vanderkooi JM (2005) J Phys Chem B 109:24152

    Article  CAS  Google Scholar 

  40. Almond A, Petersen BO, Duus JØ (2004) J Biochem 43:5853

    Article  CAS  Google Scholar 

  41. Momany FA, Appell M, Willett JL, Bosma WB (2005) Carbohydr Res 340:1638

    Article  CAS  Google Scholar 

  42. Moir A, Smith DA (1990) J Annu Rev Microbiol 44:53

    Google Scholar 

  43. Yousfi N, Sekkal-Rahal M, Sayede A, Springborg M (2010) J Comput Chem 31:1312

    CAS  Google Scholar 

  44. HyperChem® Release 7 for Windows, Hardware lock HyperChem inc Florida 32601 USA

  45. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  46. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  47. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  48. Perdew JP, Chevary JA, Vosko SH, Kackson KA, Pederson MA, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  49. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  50. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  51. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129

    Article  CAS  Google Scholar 

  52. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    Article  CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  54. Csonka GI (2002) J Mol Struct (THEOCHEM) 584:1

    Article  CAS  Google Scholar 

  55. Csonka GI, French AD, Johnson GP, Stortz CA (2009) J Chem Theory Comput 5:679

    Article  CAS  Google Scholar 

  56. Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598

    Article  CAS  Google Scholar 

  57. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majda Sekkal-Rahal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15.4 kb)

ESM 2

(DOCX 15.9 kb)

ESM 3

(DOCX 16.8 kb)

ESM 4

(DOCX 15.3 kb)

ESM 5

(DOCX 13.9 kb)

ESM 6

(DOCX 17.9 kb)

ESM 7

(DOCX 325 kb)

ESM 8

(DOCX 79.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fodil, R., Sekkal-Rahal, M. & Sayede, A. Testing the CP-correction procedure with different DFT methods on H-bonding complexes of κ-carrabiose with water molecules. J Mol Model 23, 31 (2017). https://doi.org/10.1007/s00894-016-3199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3199-2

Keywords

Navigation