Skip to main content

Advertisement

Log in

First-principles calculations of effects of pressure on paramagnetic, ferromagnetic, and antiferromagnetic spin-web Cu3TeO6

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The structure, electronic, and magnetic properties have been investigated by the first-principles calculations for paramagnetic, ferromagnetic, and antiferromagnetic Cu3TeO6 under pressure from 0 to 100 GPa. The calculated lattice parameters at 0 GPa are in excellent agreement with the available calculated and experimental values. With increasing pressure, the lattice parameters and volume decrease, but Cu3TeO6 keeps a stable cubic structure. The electronic calculations show that paramagnetic and ferromagnetic Cu3TeO6 are metallic, and antiferromagnetic Cu3TeO6 is non-metallic with a direct band gap which decreases with the increasing pressure. Under the pressure, their non-locality of density of states enhances and the electrons become more active. Moreover, for antiferromagnetic Cu3TeO6, the spin moments of Cu atoms are affected obviously by pressures, and Te atoms show nonmagnetic performance. The total magnetic moment, which is mainly contributed by Cu, reaches the maximum at 20 GPa, and decreases with the increasing pressure. The knowledge of these properties will provide reference and guidance for the subsequent study of Cu3TeO6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Keimer B, Kivelson SA, Norman MR, Uchida S, Zaanen J (2015). Nature 518:179

    Article  CAS  Google Scholar 

  2. Yan BL, Qin H, Zeng W, Zhang H, Wei Y, Fan DH, Tang B, Liu FS, Liu QJ (2020). J. Magn. Magn. Mater. 495:165861

    Article  CAS  Google Scholar 

  3. Botana AS, Norman MR (2017). Phys. Rev. B 95:115123

    Article  Google Scholar 

  4. Lemmens P, Güntherodt G, Gros C (2003). Phys. Rep. 375:1

    Article  CAS  Google Scholar 

  5. Chakraborty J (2019). J. Phys. Chem. Solids 134:182

    Article  CAS  Google Scholar 

  6. Chakraborty J, Dasgupta I (2012). Phys. Rev. B 86:054434

    Article  Google Scholar 

  7. Herak M, Berger H, Prester M, Miljak M, Źivković I, Milat O, Drobac D, Popović S, Zaharko S (2005). J. Phys. Condens. Matter 17:7667

    Article  CAS  Google Scholar 

  8. Choi KY, Lemmens P, Choi ES, Berger H (2008). J. Phys. Condens. Matter 20:505214

    Article  Google Scholar 

  9. Zhang ZH, Itoh M (2014). J. Magn. Magn. Mater. 354:146

    Article  Google Scholar 

  10. Yanase Y, Yamada K (2001). J. Phys. Chem. Solids 62:215

    Article  CAS  Google Scholar 

  11. Mandal PR, Sarkara T, Greene GR (2019). PNAS 116:5991

    Article  CAS  Google Scholar 

  12. Maier TA, Scalapino DJ (2020). J. Supercond. Nov. Magn. 33:15

    Article  CAS  Google Scholar 

  13. Armitage NP, Fournier P, Greene RL (2010). Rev. Mod. Phys. 82:2421

    Article  CAS  Google Scholar 

  14. Mülle KA (2002). Phil. Mag. Lett 82:279

    Article  Google Scholar 

  15. Pavarini E, Dasgupta I, Saha-Dasgupta T, Jepsen O, Andersen OK (2001). Phys. Rev. Lett. 87:047003

    Article  CAS  Google Scholar 

  16. Chakravarty S, Laughlin RB, Morr DK, Nayak C (2001). Phys. Rev. B. 63:094503

    Article  Google Scholar 

  17. Iachello F (2002). Philos. Mag. Lett. 82:289

    Article  CAS  Google Scholar 

  18. Yu TL, Matt CE, Bisti F, Wang XQ, Schmitt T, Chang JH, Eisaki H, Feng DL, Strocov VN (2020). Npj Quantum Mater 5:46

    Article  CAS  Google Scholar 

  19. Kazuhisa N (2020). J. Phys.: Conf. Ser. 1590:012019

    Google Scholar 

  20. Zegrodnik M, Biborski A, Spalek J (2020). Eur. Phys. J. B 93:183

    Article  CAS  Google Scholar 

  21. Kohsaka Y, Taylor C, Fujita K, Schmidt A, Lupien C, Hanaguri T, Azuma M, Takano M, Eisaki H, Takagi H, Uchida S, Davis JC (2007). Science 315:1380

    Article  CAS  Google Scholar 

  22. Caimi G, Degiorgi L, Berger H, Forró L (2006). Europhys. Lett. 75:496

    Article  CAS  Google Scholar 

  23. Wang D, Bo XY, Tang F, Wan XG (2019). Phys. Rev. B 99:035160

    Article  CAS  Google Scholar 

  24. Falck L, Lindqvist O, Moret J (1978). Acta Cryst. B 34:896

    Article  Google Scholar 

  25. Li K, Li C, Hu J, Li Y, Fang C (2017). Phys. Rev. Lett. 119:247202

    Article  Google Scholar 

  26. Herak M (2011). Solid State Commun. 151:1588

    Article  CAS  Google Scholar 

  27. Greedan JE (2001). J. Mater. Chem. 11:37

    Article  CAS  Google Scholar 

  28. Zhu XL, Wang Z, Su X, Vilarinho PM (2014). ACS Appl. Mater. Interfaces 6:11326

    Article  CAS  Google Scholar 

  29. Gao J, Zeng W, Tang B, Zhong M, Liu QJ (2021). Mater. Sci. Semicond. Process. 121:105447

    Article  CAS  Google Scholar 

  30. Ventra MD, Pantelides ST, Lang ND (2000). Phys. Rev. Lett. 84:979

    Article  Google Scholar 

  31. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002). J. Phys. Condens. Matter 14:2717

    Article  CAS  Google Scholar 

  32. Hohenberg P, Kohn W (1964). Phys. Rev. 136:864

    Article  Google Scholar 

  33. Jones RO, Gunnarsson O (1989). Rev. Mod. Phys. 61:689

    Article  CAS  Google Scholar 

  34. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005). Z. Kristallogr. 220:567

    CAS  Google Scholar 

  35. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992). Phys. Rev. B 46:6671

    Article  CAS  Google Scholar 

  36. Monkhorst HJ, Pack JD (1976). Phys. Rev. B 13:5188

    Article  Google Scholar 

  37. Dong LH (2020) The characterizations of M3TeO6 (M = Cu, Co) and their physical properties under high pressure. Dissertation, Jilin University

  38. Månsson M, Prša K, Sugiyamac J, Andreicad D, Luetkense H, Bergerf H (2012). Phys. Procedia 30:142

    Article  Google Scholar 

  39. Mathieu R, Ivanov SA, Nordblad P, Weil M (2013). Eur. Phys. J. B 86:361

    Article  Google Scholar 

  40. Lu LY, Tan JJ, Jia OH, Chen XR (2007). Physica B 399:66

    Article  CAS  Google Scholar 

Download references

Availability of data and material

The data sets supporting the results of this work are included within the article; the other datasets generated during the current study are available from the corresponding author on reasonable request.

Funding

This project was supported by the National Natural Science Foundation of China (Grant Nos. 41674088 and 11002120) and the Fundamental Research Funds for the Central Universities (Grant No. 2682020ZT102).

Author information

Authors and Affiliations

Authors

Contributions

Yi-Hua Du: writing - original draft, formal analysis, investigation, methodology, software.

Wei Zeng: investigation, methodology, writing - review and editing.

Bin Tang: methodology, software, writing - review and editing.

Mi Zhong: data curation, writing - review & editing, visualization.

Qi-Jun Liu: conceptualization, project administration, resources, supervision, writing - review and editing.

Fu-Sheng Liu: data curation, methodology, writing - review and editing.

Xiao-Juan Ma: data curation, methodology, conceptualization, visualization.

Corresponding authors

Correspondence to Yi-Hua Du or Xiao-Juan Ma.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YH., Zeng, W., Tang, B. et al. First-principles calculations of effects of pressure on paramagnetic, ferromagnetic, and antiferromagnetic spin-web Cu3TeO6. J Mol Model 27, 129 (2021). https://doi.org/10.1007/s00894-021-04747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04747-8

Keywords

Navigation