Skip to main content
Log in

Investigating of structural, electronic, magnetic, dynamic, and thermoelectric properties of CoCrSe half-Heusler compound using FP-LAPW method

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, elastic, electronic, magnetic, thermoelectric, and dynamic properties of the \(CoCrSe\) half-Heusler compound were examined using the WIEN2k code. Calculations were carried out in this work using the full-potential linearized augmented plane-wave (FP-LAPW) approach and density functional theory (DFT). We used modified Becke–Johnson (mBJ) exchange–correlation functional to improve the electronic energy bandgap. We studied different electronic properties of the \(CoCrSe\) compound, including density of states (DOS) and band structure plots. We also investigated the magnetic characteristics by computing magnetic moments and examining the behavior of spin-polarized electronic states. In addition, the elastic characteristics of the \(CoCrSe\) compound were determined. These properties, such as stiffness, resilience, and general stability, provide vital insights into the material’s response to mechanical deformation. The calculated elastic constants indicate that \(CoCrSe\) it is mechanically stable, brittle, and anisotropic. On the other hand, the compound is dynamically stable. Finally, we also check the thermoelectric properties.

Graphical abstract

The crystal structure of the compound \(CoCrSe\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are available upon reasonable request.]

References

  1. A.S. Gzyl, A.O. Oliynyk, A. Mar, Half-heusler structures with full-Heusler counterparts: machine-learning predictions and experimental validation, an ACS. Cryst. Growth Des. 20(10), 6469–6477 (2020)

    Article  Google Scholar 

  2. T. Graf, F. Casper, J. Winterlik, B. Balke, G.H. Fecher, C. Felser, Crystal structure of new Heusler compounds. Z. Anorg. Allg. Chem. 635(6–7), 976 (2009)

    Article  Google Scholar 

  3. H.C. Kandpal, C. Felser, R. Seshadri, Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D Appl. Phys. 39(5), 776 (2006)

    Article  ADS  Google Scholar 

  4. D. Shrivastava, N. Acharya, S. Sanyal, Investigation of thermoelectricity in KScSn half-Heusler compound. AIP Conf. Proc. 1953(1), 11036 (2018)

    Google Scholar 

  5. H. Ohno, M.D. Stiles, B. Dieny, Scanning the Issue: spintronics. Proc. IEEE 104(10), 1782–1786 (2016)

    Article  Google Scholar 

  6. A. Telegin, Y. Sukhorukov, Magnetic semiconductors as materials for spintronics. Magnetochemistry. 8(12), 173 (2022)

    Article  Google Scholar 

  7. T. Kojima, S. Kameoka, T.A.P. Tsai, The emergence of Heusler alloy catalysts. Sci. Technol. Adv. Mater. 20(1), 445–455 (2019)

    Article  Google Scholar 

  8. H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nat. Mater. 9(7), 546 (2010)

    Article  ADS  Google Scholar 

  9. L.Y. Wang, X.F. Dai, X.T. Wang, Y. Li, Z.M. Wu, Y.T. Cui, G.D. Liu, Highly-spin-polarized interface in CoTiSb/Fe(Mn)/CoTiSb superlattice. Superlattices Microstruct. 86, 493–500 (2015)

    Article  ADS  Google Scholar 

  10. Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan, Y. Zhang, Y. Grin, Z. Yu, K. Guo, J. Zhang, W. Zhang, Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics. Nat. Commun. 13, 35 (2022)

    Article  ADS  Google Scholar 

  11. J. Liu, G. Cao, Z. Zhou, H. Liu, Screening potential topological insulators in Half-Heusler compounds via compressed-sensing. J. Phys. Condens. Matter 33(32), 325501 (2021)

    Article  ADS  Google Scholar 

  12. Y. Mogulkoc, Y. Öztekin Cıftcı, Investigation on structural, elastic, electronic and vibrational properties of LiTiAl half-Heusler compound using first principles methods. Cumhuriyet Sci. J. 38(2), 312 (2017)

    Article  Google Scholar 

  13. C. Liu, Y. Lee, T. Kondo, E.D. Mun, M. Caudle, B. Harmon, S.L. Bud’ko, P.C. Canfield, A. Kaminski, Metallic surface electronic state in half-Heusler compounds RPtBiR=Lu, Dy, Gd. Phys. Rev. B 83(20), 205133 (2011)

    Article  ADS  Google Scholar 

  14. J.W. Bennett, Discovery and design of functional materials: integration of database searching and first principles calculations. Phys. Proc. 34(1875–3892), 14–23 (2012)

    Article  ADS  Google Scholar 

  15. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S.R. Saha, D. Pratt, J.W. Lynn, J. Paglione, Topological RPdBi half-Heusler semimetals: a new family of noncentro symmetric magnetic superconductors. Sci. Adv. 1(5), 1–6 (2015)

    Article  Google Scholar 

  16. O. Appel, G. Breuer, S. Cohen, O. Beer, T. Kyratsi, Y. Gelbstein, S. Zalkind, The initial stage in oxidation of ZrNiSn (half Heusler) alloy by oxygen. Materials. 12(9), 1509 (2019)

    Article  ADS  Google Scholar 

  17. A. Roy, J.W. Bennett, K.M. Rabe, D. Vanderbilt, Half-Heusler semiconductors as piezoelectrics. Phys. Rev. Lett. 109(3), 037602 (2012)

    Article  ADS  Google Scholar 

  18. A. Azam, R. Sharma, D. Behera, H.H. Raza, H.S. Ali, A.S.M. Abdelmohsend, A.M.M. Abdelbacki, S.K. Mukherjee, Insight into the structural, optoelectronic, and thermoelectric properties of Fe2HfSi Heusler by DFT investigation. RSC Adv. 13(23), 15437–21544 (2023)

    Article  ADS  Google Scholar 

  19. A. Saim, F. Belkharroubi, F.Z. Boufadi, I. Ameri, L.F. Blaha, A. Tebboune, M.N. Belkaid, W. Belkilali, M. Ameri, Y. Al-Douri, A.F. Abd El-Rehim, Investigation of the structural, elastic, electronic, and optical properties of half-Heusler CaMgZZ=C, Si,≥, Sn, Pb compounds. J. Electron. Mater. 51(7), 4014–4028 (2022)

    Article  ADS  Google Scholar 

  20. D. Kumar, P. Chand, Enhanced optical and thermoelectric properties of Ti doped half-Heusler alloy NbRuP: a first principles study. Solid State Commun. 366–367(0038–1098), 115179 (2023)

    Article  Google Scholar 

  21. A.V. Lukoyanov, S.T. Baidak, Ab initio investigation of electronic structure and topological features in ErNiSb and ErSb compounds. IOP Conf. Ser. Mater. Sci. Eng. 1263, 012026 (2022)

    Article  Google Scholar 

  22. A. A. Page, ‘Half-Heusler Alloys as Promising Thermoelectric Materials’. Ph. D. thesis, University of Michigan (2017).

  23. T.C. Chibueze, F. Ezema, A.T. Raji, Mechanical stability, electronic and magnetic properties of half-Heusler FeCrAs alloy for spintronics application. Curr. Sci. Technol. 1(2), 1–8 (2021)

    Article  Google Scholar 

  24. F. Casper, “Structure and properties of intermetallic ternary rare earth compounds”, Ph. D. thesis, Universität Mainz (2008)

  25. S.E. Gulebaglan, E.K. Dogan, Investigation of structural, electronic, and dynamic properties of half-Heusler alloys XCuBX=Ti, Zr by first principles calculations. Cryst. Res. Technol. 56(1), 2000116 (2021)

    Article  Google Scholar 

  26. Y. Wu, B. Wu, Z. Wei, Z. Zhou, C. Zhao, Y. Xiong, S. Tou, S. Yang, B. Zhou, Y. Shao, Structural, half-metallic and elastic properties of the half-Heusler compounds NiMnMM=Sb, As∧Si∧IrMnAs from first-principles calculations. Intermetallics 53, 26–33 (2014)

    Article  Google Scholar 

  27. D. Vishali, R. John, Structural, electronic and magnetic properties of the Half-Heusler alloy CrZSi (Z = Sc, Ti). J. Cryst. Growth 583, 126556 (2022)

    Article  Google Scholar 

  28. H.H. Ming, Z.C. Kun, H.Z. Dong, Z. Jun, Y.J. Tao, L.S. Jun, Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZZ=S, Se, and Te. Chin. Phys. B 27(1), 017103 (2018)

    Article  ADS  Google Scholar 

  29. M. Mokhtari, D. Fethallah, G. Benabdallah, L. Zekri, S. Benalia, N. Zekri, Theoretical study of the structural stability, electronic and magnetic properties of XVSbX=Fe, Ni, and Co half-Heusler compounds. Condens. Matter Phys. 21(4), 43705 (2018)

    Article  ADS  Google Scholar 

  30. S.A. Khandy, Inspecting the electronic structure and thermoelectric power factor of novel p-type half-Heuslers. Sci. Rep. 11, 20756 (2021)

    Article  ADS  Google Scholar 

  31. S.A. Khandy, J.D. Chai, Thermoelectric properties, phonon, and mechanical stability of new half-metallic quaternary Heusler alloys: FeRhCrZ (Z = Si and Ge). J. Appl. Phys. 127, 165102 (2020)

    Article  ADS  Google Scholar 

  32. S.A. Khandy, J.D. Chai, Strain engineering of electronic structure, phonon, and thermoelectric properties of p-type half-Heusler semiconductor. J. Alloys. Compoun. 850, 156615 (2021)

    Article  Google Scholar 

  33. S.A. Khandy, J.D. Chai, Origin of pseudo gap and thermoelectric signatures of semimetallic Ru2TaGa: structural stability from phonon dynamics, mechanical, and thermodynamic predictions. J. Phys. Chem. Solid 154, 110098 (2021)

    Article  Google Scholar 

  34. Y.Z. Yu, S. Li, P.M. Mei, S.S. Juan, First-principal studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Phys. Sin. 65(12), 127501 (2016)

    Article  Google Scholar 

  35. T. Graf, C. Felser, S.S.P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39(1), 1–50 (2011)

    Article  Google Scholar 

  36. T. Saito, T. Katayama, T. Ishikawa, M. Yamamoto, D. Asakura, T. Koide, Y. Miura, M. Shirai, Interface structure of half-metallic Heusler alloy Co2MnSi thin films facing an MgO tunnel barrier determined by x-ray magnetic circular dichroism. Phys. Rev. B 81(14), 144417 (2010)

    Article  ADS  Google Scholar 

  37. W. M. Al-Sawai, “A Study of Topological Insulator States of Half-Heusler Materials and the Momentum Density of Overdoped Cuprates”, Ph. D. thesis, Northeastern University (2010)

  38. S. Blugel, G. Bihlmayer, Full-potential linearized augmented planewave method. Comp. Nanosci. 31, 85–129 (2006)

    Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Computer Phys. Comm. 175(1), 67–71 (2006)

    Article  ADS  Google Scholar 

  41. A. Togo, L. Chaput, I. Tanaka, Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B: Cond. Matt. Phys. 91, 094306–094331 (2015)

    Article  ADS  Google Scholar 

  42. K. Esfarjani, H.T. Stokes, Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112 (2008)

    Article  ADS  Google Scholar 

  43. K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063 (1997)

    Article  ADS  Google Scholar 

  44. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Conden. Matter 21, 395502–395519 (2009)

    Article  Google Scholar 

  45. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30(9), 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 9(1), 49–58 (1929)

    Article  Google Scholar 

  47. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45(367), 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  Google Scholar 

  48. C. Zener, Elasticity and inelasticity of metals (University of Chicago Press, Chicago, 1948)

    Google Scholar 

  49. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. J. Appl. Phys. 84, 4891 (1998)

    Article  ADS  Google Scholar 

  50. J. Kubler, Theory of itinerant electron magnetism (Oxford University Press, Oxford, 2009)

    Google Scholar 

  51. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66(17), 174429 (2002)

    Article  ADS  Google Scholar 

  52. Q. Jiang, R. Wan, Z. Zhang, Y. Lei, G. Tian, High thermoelectric performance of half-Heusler ZrXPbX=, Pd, and Pt compounds from first principle calculation. J. Phys. Condens. Matter 33(46), 465501 (2021)

    Article  ADS  Google Scholar 

  53. H. Alqurashi, R. Haleoot, A. Pandit, B. Hamad, Investigations of the electronic, dynamical, and thermoelectric properties of Cd1–xZnxO augmented: first-principles calculations. Mater. Today Commun. 28, 102511 (2021)

    Article  Google Scholar 

  54. M.K. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher, K.M. Paraskevopoulos, S.D. Mahanti, M.G. Kanatzidis, Substitution of Bi for Sb and its role in the thermoelectric properties and nanostructuring in Ag1–xPb18MTe20 M=Bi, Sbx=0, 0.14, 0.3. Chem. Mater. 20(10), 3512–3520 (2008)

    Article  Google Scholar 

  55. V.L. Ginzburg, Thermoelectric effects in superconductors. J. Supercond. 2, 323–328 (1989)

    Article  ADS  Google Scholar 

  56. H.J. Xiang, D.J. Singh, Suppression of thermopower of NaxCoO2 by an external magnetic field: Boltzmann transport combined with spin-polarized density functional theory. Phys. Rev. B 76, 195111 (2007)

    Article  ADS  Google Scholar 

  57. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005)

    Article  Google Scholar 

  58. D.V. Suetin, I.R. Shein, Electronic structure, mechanical and dynamical stability of hexagonal subcarbides M2C (M=Tc, Ru, Rh, Pd, Re, Os, Ir and Pt): Ab initio calculations. Phys. Solid State 60, 213–224 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Noorhan F. AlShaikh Mohammad: data curation, methodology, software, validation, writing—original draft preparation. Mohammed S. Abu-Jafar: conceptualization, investigation, methodology, project administration, supervision, validation, visualization, writing—reviewing and editing. Jihad H. Asad: data curation, methodology, validation, writing—reviewing and editing. Bouhemadou: data curation, investigation, software, validation. Ahmad A. Mousa: data curation, methodology, software, validation. R. Khenata: data curation, methodology, validation. Abdullah Chik: data curation (supporting); software (supporting).

Corresponding author

Correspondence to Mohammed S. Abu-Jafar.

Supplementary Information

Below is the link to the electronic supplementary material.

10051_2024_700_MOESM1_ESM.docx

See the supplementary material for additional figures. The band structure for Types 1, 2, 3, 4 & 6 and the phonon dispersion relation for Types 2, 3, 4 & 6 have been plotted. (DOCX 2727 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlShaikh Mohammad, N.F., Abu-Jafar, M.S., Asad, J.H. et al. Investigating of structural, electronic, magnetic, dynamic, and thermoelectric properties of CoCrSe half-Heusler compound using FP-LAPW method. Eur. Phys. J. B 97, 56 (2024). https://doi.org/10.1140/epjb/s10051-024-00700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00700-9

Navigation