Skip to main content
Log in

Computational study about the thermal stability and the detonation performance of nitro-substituted thymine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

By replacing hydrogen atoms in thymine molecules with nitro groups, a series of new high-energy-density molecules are designed. To explore the thermal stability, the heats of formation (HOF) are calculated at the B3PW91-D3/6-311++G(2df,2p) level. The bond dissociation energy and the bond order are also calculated to predict the kinetic stability at the same level. Based on our calculations, excellent stability is confirmed for title molecules. To confirm the possibility of application as high-energy-density compounds, the molecular density (ρ), explosive heats (Q), detonation velocity (D), detonation pressure (P), free space per molecule in crystal lattice (ΔV), and characteristic drop height (H50) are calculated. On the consideration of the stability and the detonation characters, E1 is confirmed as the candidates of high-energy-density compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ge Z, Ding K, Li Y, Xu H, Chen Z, Ma Y, Li T, Zhu W, Zheng W (2019) Structural evolution of linn+ (n = 2, 4, 6, 8, and 10) clusters: mass spectrometry and theoretical calculations. RSC Adv 9:6762–6769

    Article  CAS  Google Scholar 

  2. Choi C, Yoo H-W, Goh EM, Cho SG, Jung Y (2016) Ti(n5)4 as a potential nitrogen-rich stable high-energy density material. J Phys Chem A 120:4249–4255

    Article  CAS  Google Scholar 

  3. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38:2004–2009

    Article  CAS  Google Scholar 

  4. Liu T, Jia J, Li B, Gao K (2019) Theoretical exploration on structural stabilities and detonation properties of nitrimino substituted derivatives of cyclopropane. Chin J Struct Chem 38:688–694

    Google Scholar 

  5. Klapötke TM, Stierstorfer JR (2008) The cn7− anion. J Am Chem Soc 131:1122–1134

    Article  CAS  Google Scholar 

  6. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbé A (2009) An electrostatic interaction correction for improved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  7. Zamani M, Keshavarz MH (2015) New nhno2 substituted borazine-based energetic materials with high detonation performance. Comput Mater Sci 97:295–303

    Article  CAS  Google Scholar 

  8. Viswanath DS, Ghosh TK, Boddu VM (2018) 1,3,3-trinitroazetidine (tnaz). In: Viswanath DS, Ghosh TK, Boddu VM (eds) Emerging energetic materials: synthesis, physicochemical, and detonation properties. Springer Netherlands, Dordrecht, pp 293–307

    Chapter  Google Scholar 

  9. Politzer P, Murray JS (2011) Some perspectives on estimating detonation properties of c, h, n, o compounds. Cent Eur J Energetic Mater 8:209–220

    CAS  Google Scholar 

  10. Li B, Li L, Yang C (2020) Theoretical study on nitroso-substituted derivatives of azetidine as potential high energy density compounds. Chin J Struct Chem 39:643–650

    CAS  Google Scholar 

  11. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2: 1 cocrystal of cl-20: Hmx. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  12. Eberly JO, Mayo ML, Carr MR, Crocker FH, Indest KJ (2019) Detection of hexahydro-1,3-5-trinitro-1,3,5-triazine (rdx) with a microbial sensor. J Gen Appl Microbiol 64:139–144

    Google Scholar 

  13. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  CAS  Google Scholar 

  14. Dahman Y, Puskas JE, Margaritis A, Merali Z, Cunningham M (2003) Novel thymine-functionalized polystyrenes for applications in biotechnology. Polymer synthesis and characterization. Macromolecules 36:2198–2205

    Article  CAS  Google Scholar 

  15. Kumar S, Koh J, Kim H, Gupta MK, Dutta PK (2012) A new chitosan–thymine conjugate: synthesis, characterization and biological activity. Int J Biol Macromol 50:493–502

    Article  CAS  Google Scholar 

  16. Iwai S (2001) Synthesis and thermodynamic studies of oligonucleotides containing the two isomers of thymine glycol. Chem Eur J 7:4343–4351

    Article  CAS  Google Scholar 

  17. Fox JJ, Yung N, Davoll J, Brown GB (1956) Pyrimidine nucleosides. I. A new route for the synthesis of thymine nucleosides1. J Am Chem Soc 78:2117–2122

    Article  CAS  Google Scholar 

  18. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  20. Byrd EF, Rice BM (2006) Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A 110:1005–1013

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09, revision a.1, Wallingford, CT, 2009

  22. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J Chem Phys 132:154104

    Article  CAS  Google Scholar 

  23. Becke AD, Johnson ER (2005) A density-functional model of the dispersion interaction. J Chem Phys 123:154101

    Article  CAS  Google Scholar 

  24. Johnson ER, Becke AD (2006) A post-hartree-fock model of intermolecular interactions: inclusion of higher-order corrections. J Chem Phys 124:174104

    Article  CAS  Google Scholar 

  25. Linstrom PJ, Mallard WG (2001) The nist chemistry webbook: a chemical data resource on the internet. J Chem Eng Data 46:1059–1063

    Article  CAS  Google Scholar 

  26. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of c–h–n–o explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  27. Kamlet MJ, Ablard J (1968) Chemistry of detonations. Ii. Buffered equilibria. J Chem Phys 48:36–42

    Article  CAS  Google Scholar 

  28. Politzer P, Martinez J, Murray JS, Concha MC (2010) An electrostatic correction for improved crystal density predictions of energetic ionic compounds. Mol Phys 108:1391–1396

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Prop Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the Natural Science Foundation of Guizhou Education University (Nos.14BS017 and 2019ZD001) and the Natural Science Foundation of Guizhou Province (Nos. QKHPTRC[2018]5778-09 and QKHJC[2020]1Y038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Butong Li or Lulin Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, L. & Peng, J. Computational study about the thermal stability and the detonation performance of nitro-substituted thymine. J Mol Model 26, 253 (2020). https://doi.org/10.1007/s00894-020-04518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04518-x

Keywords

Navigation