Skip to main content

Abstract

1,3,3-Trinitroazetidine (Molecular Formula: C3H4N4O6, TNAZ) has been assessed as a potential high energy replacement for TNT. Australian industrial plant is a melt-castable explosive that has been proposed as a potential replacement for TNT. The structure of the compound has been confirmed by IR, NMR, mass, elemental analysis and by X-ray crystallography. HPLC technique has been employed to confirm the purity of TNAZ (>99%). The compound is further characterized by thermal techniques and is found to undergo limited decomposition at its melting point. Small scale sensitivity tests have also been carried out and the results show that TNAZ is significantly more sensitive to mechanical stimuli than TNT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Archibald TG, Gilardi R, Baum K, George C (1990) Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem 55(9):2920–2924

    Google Scholar 

  2. Agrawal PM, Rice BM, Zheng L, Velardez GF, Thompson DL (2006) Molecular dynamics simulations of the melting of 1,3,3-Trinitroazetidine. J Phys Chem B 110(11):5721–5726

    Google Scholar 

  3. Yu C-L, Zhang Y-X, Bauer SH (1998) Estimation of the equilibrium distribution of products generated during high temperature pyrolyses of 1,3,3-trinitroazetidine; thermochemical parameters. J Mol Structure (Theochem) 432:63–68

    Google Scholar 

  4. Watt DS, Cliff MD (1998) TNAZ based melt-cast explosives: technology review and AMRL Research Directions, DSTO Aeronautical and Maritime Research Laboratory, AR-010-600, July 1998

    Google Scholar 

  5. Katritzky AR, Cundy DJ, Chen J (1994) Novel syntheses of 1,3,3-trinitroazetidine. J Heterocycl Chem 31(2):271–275

    Google Scholar 

  6. Marchand AP, Rajagopal D, Bott SG, Archibald TG (1995) A novel approach to the synthesis of 1,3,3-trinitroazetidine. J Org Chem 60(15):4943–4946

    Google Scholar 

  7. Coburn MD, Hiskey MA, Archibald TG (1998) Scale-up and waste-minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ). Waste Manage (Oxford) 17(2/3):143–146

    Google Scholar 

  8. Nissan R, Ruppert W (2005) More than a decade of green energetics R&D research. Joint Services Environmental Management Conference Columbus, OH, US. Army RDECOM/ Hughes Assoc. INC

    Google Scholar 

  9. Axenrod T, Watnick C, Yazdekhasti H, Dave PR (1993) Synthesis of 1,3,3-trinitroazetidine. Tetrahedron Lett 34(42):6677–6680

    Google Scholar 

  10. Agrawal JP, Hogdson RD (2007) Organic chemistry of explosives. Wiley, New York, NY, pp 265–269

    Google Scholar 

  11. Jadhav HS, Talawar MB, Dhavale DD, Asthana SN, Krishnamurthy VN (2006) Alternate method for synthesis of 1,3,3-trinitroazetidine (TNAZ): next generation melt-castable high-energy material. Indian J Chem Technol 13(1):41–46

    Google Scholar 

  12. Stepanova EV, Stepanova AI (2015) Synthesis and properties of 1,3,3-trinitroazetidine, 58(11):3–15

    Google Scholar 

  13. Sućeska M, Rajić M, Mateĉić-Muśyanić S, Zeman S, Jalovŷ Z (2003) Kinetics and heats of sublimation and evaporation of 1,3,3-trinitroazetidine (TNAZ). J Therm Anal Calorim 74(3):853–866

    Google Scholar 

  14. Akhavan J (2004) Chemistry of explosives. 2nd edn. RSC Paperbacks, Cambridge, UK, p 47

    Google Scholar 

  15. Politzer P, Lane ME, Concha MC, Redfern PC (1995) Comparative computational analysis of some nitramine and difluoramine structures, dissociation energies and heats of formation. J Mol Struct (Theochem) 338(1–3):249–255

    Google Scholar 

  16. Garland NL, McElvany SW (1998) Ionization potentials of TNAZ and its decomposition products. Chem Phys Lett 297:147–153

    Google Scholar 

  17. Simpson RL, Garza RG, Foltz MF, Ornellas DL, Urtiew PA (1994) Characterisation of TNAZ. UCRL-ID-119672, Lawerence Livermore National Laboratory

    Google Scholar 

  18. Dewey MA, Blau RJ, Doll DW, Lee KE, Braithwaite PC (2003) ARDEC explosives development: melt/pour explosives containing TNAZ. Thiokol Corporation. In: Insensitive munitions & energetic materials technology symposium, March 10–13, 2003. Orlando, FL

    Google Scholar 

  19. Liu M-H, Chen C, Hong Y-S (2005) Theoretical study of the unimolecular decomposition mechanisms of energetic TNAD and TNAZ explosives. Int J Quantum Chem 102(4):398–408

    Google Scholar 

  20. McKenney RL, Floyd TG, Stevens WE (1997) Binary phase diagram series: 1,3,3-trinitroazetidine (TNAZ)/2,4,6-trinitrotoluene (TNT). Wright Laboratory, Armament Directorate Report, WL-TR-1997–7001, January 1997

    Google Scholar 

  21. Osmont L, Catoire I, Gökalp V, Yang V (2007) Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust Flame 151(1–2):262–273

    Google Scholar 

  22. Jenkins TF, Bartolini C, Ranney TA (2003) Stability of CL-20, TNAZ, HMX, RDX, NG, and PETN in moist, unsaturated soil. ERDC/CRREL TR-03-7, April 2003

    Google Scholar 

  23. Liu Y, Liu Z-N, C-m Yin (2004) Phase diagram and eutectic of binary systems for 1,3,3-trinitroazetidine (TNAZ) with some energetic materials. Hanneng Cailiao 12(Suppl. 1):227–230

    Google Scholar 

  24. Annex DS, Allman JC, Lee YT (1991) Chemistry of energetic materials. In Olah GA, Squire DR (eds) Academic Press, New York, NY, pp 27–54

    Google Scholar 

Additional Scholarly Articles for Further Reading

  1. Agrawal PM, Rice BM, Zheng L, Velardez GF, Thompson DL (2006) Molecular dynamics simulations of the melting of 1,3,3-trinitroazetidine. J Phys Chem B 110(11):5721–5726. https://doi.org/10.1021/jp056690

    Article  CAS  Google Scholar 

  2. Alavi S, Reilly LM, Thompson DL (2003) Theoretical predictions of the decomposition mechanism of 1,3,3-trinitroazetidine (TNAZ). J Chem Phys 119(16):8297–8304. https://doi.org/10.1063/1.1611471

    Article  CAS  Google Scholar 

  3. Anderson K, Homsy J, Behrens R, Bulusu S (1997) Mechanistic and kinetic studies of the thermal decomposition of TNAZ and NDNAZ. CPIA Publ 657 (JANNAF Propulsion Systems Hazards Subcommittee Meeting, vol 1), pp 37–51

    Google Scholar 

  4. Anex DS, Allman JC, Lee YT (1991) Studies of initial dissociation processes in 1,3,3-trinitroazetidine by photofragmentation translational spectroscopy. Academic, pp 27–54

    Google Scholar 

  5. Archibald TG, Gilardi R, Baum K, George C (1990) Synthesis and x-ray crystal structure of 1,3,3-trinitroazetidine. J Org Chem 55(9):2920–2924. https://doi.org/10.1021/jo00296a066

    Article  CAS  Google Scholar 

  6. Astrat’ev AA, Stepanov AI, Dashko DV (2013) Synthesis, energetic and some chemical properties of new explosive—3,4-bis(4’-nitrofurazan-3’-yl)furazan (BNTF). University of Pardubice, Institute of Energetic Materials, pp 482–496

    Google Scholar 

  7. Aubuchon CM, Rector KD, Holmes W, Fayer MD (1999) Nitro group asymmetric stretching mode lifetimes of molecules used in energetic materials. Chem Phys Lett 299(1):84–90. https://doi.org/10.1016/S0009-2614(98)01241-X

    Article  CAS  Google Scholar 

  8. Axenrod T, Watnick C, Yazdekhasti H, Dave PR (1995) Synthesis of 1,3,3-trinitroazetidine via the Oxidative Nitrolysis of N-p-Tosyl-3-azetidinone Oxime. J Org Chem 60(7):1959–1964. https://doi.org/10.1021/jo00112a014

    Article  CAS  Google Scholar 

  9. Bakhtiar R, Bulusu S (1995) Molecular complexes of cyclodextrins: application of ion-spray mass spectrometry to the study of complexes with selected nitramines. Rapid Commun Mass Spectrom 9(14):1391–1394. https://doi.org/10.1002/rcm.1290091413

    Article  CAS  Google Scholar 

  10. Bartnik R, Cal D, Marchand AP, Alihodzic S, Devasagayaraj A (1998) New method for the generation and trapping of 1-azabicyclo [1.1.0] butane. Application to the synthesis of 1,3-dinitroazetidine. Synth Commun 28(21):3949–3954. https://doi.org/10.1080/00397919808004953

    Article  CAS  Google Scholar 

  11. Bartnik R, Marchand AP (1997) Synthesis and chemistry of substituted 1-azabicyclo [1.1.0] butanes. Synlett (9):1029–1039. http://doi.org/10.1055/s-1997-1520

  12. Bauer SH, Zhang Y-X (1999) Stability tests of TNAZ—thermal and shock impact. J Energ Mater 17(2 & 3):161–176. https://doi.org/10.1080/07370659908216101

    Article  CAS  Google Scholar 

  13. Bottaro JC (1996) Recent advances in explosives and solid propellants. Chem Ind (London) (7):249–252

    Google Scholar 

  14. Braithwaite PC, Hatch RL, Lee K, Wardle RB (1998) Development of high performance CL-20 explosive formulations. In: International annual conference on ICT 29th (Energetic Materials), pp 4.1–4.7

    Google Scholar 

  15. Cahill S, Bulusu S (1993) Molecular complexes of explosives with cyclodextrins. I. Characterization of complexes with the nitramines RDX, HMX and TNAZ in solution by proton NMR spin-lattice relaxation time measurements. Magn Reson Chem 31(8):731–735. https://doi.org/10.1002/mrc.1260310808

    Article  CAS  Google Scholar 

  16. Cahill S, Rinzler AG, Owens FJ, Bulusu S (1994) Molecular complexes of explosives with cyclodextrins. II. Preparation and characterization of a solid complex ofβ-cyclodextrin with the nitramine 1,3,3-trinitroazetidine (TNAZ). J Phys Chem 98(28):7095–7100. https://doi.org/10.1021/j100079a033

    Article  CAS  Google Scholar 

  17. Calculated using Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (© 1994–2008 ACD/Labs)

    Google Scholar 

  18. Chakka S, Boddu VM, Maloney SW, Toghiani RK, Damavarapu R (2009) Vapor pressures and melting points of select munitions compounds. American Institute of Chemical Engineers, pp chakk1/1-chakk1/9

    Google Scholar 

  19. Chapman RD et al (1995) Phase behavior in TNAZ-based and other explosive formulations. American Defense Preparedness Association, pp 192–197

    Google Scholar 

  20. Coburn MD, Hiskey MA, Archibald TG (1998) Scale-up and waste-minimization of the Los Alamos process for 1,3,3-trinitroazetidine (TNAZ). Waste Manage (Oxford) 17(2/3):143–146. https://doi.org/10.1016/S0956-053X(97)10013-7

    Article  Google Scholar 

  21. Coburn MD, Hiskey MA, Oxley JC, Smith JL, Zheng W, Rogers E (1998) Synthesis and spectra of some 2H-, 13C-, and 15 N-labeled isomers of 1,3,3-trinitroazetidine and 3,3-dinitroazetidinium nitrate. J Energ Mater 16(2 & 3):73–99. https://doi.org/10.1080/07370659808217506

    Article  CAS  Google Scholar 

  22. Crowder GA, McKenney RL Jr (1999) Vibrational analysis of high-energy compounds: 1,3,3-trinitroazetidine and 1-acetyl-3,3-dinitroazetidine. J Energ Mater 17(1):49–68. https://doi.org/10.1080/07370659908216095

    Article  CAS  Google Scholar 

  23. Dubovik AV, Kozak GD, Aleshkina EA (2007) Theoretical estimation of explosion hazard of NTO, FOX-7, TNAZ, and CL-20. University of Pardubice, pp 484–495

    Google Scholar 

  24. Dudek K, Marecek P, Jalovy Z (2002) Some properties of cast TNAZ mixtures. In: International annual conference on ICT 33rd (Energetic Materials), pp 53/1–53/7

    Google Scholar 

  25. Dudek K, Marecek P, Jalovy Z (2001) Synthesis and some properties of 1,3,3-trinitroazetidine (TNAZ). University of Pardubice, pp 75–80

    Google Scholar 

  26. Dudek K, Marecek P, Vavra P (2000) Laboratory testing of HNIW mixtures. In: International annual conference on ICT 31st (Energetic Materials), pp 110/1–110/6

    Google Scholar 

  27. Fan X, Li J, Zhang Y, Zhang W, Kang X (2005) Characteristics of the smokeless CMDB propellants with 1,3,3-trinitroazetidine. Huozhayao Xuebao 28(4):35–40

    CAS  Google Scholar 

  28. Florczak B, Lipinska K (2001) Thermochemical properties of composite propellants combustion products. University of Pardubice, pp 86–98

    Google Scholar 

  29. Fuchs B, Stec D, III (2007) Computational survey of representative energetic materials as propellants for microthruster applications. In: Proceedings of SPIE-international society optics engineering 6556 (Micro (MEMS) and Nanotechnologies for Defense and Security), pp 65561B/1–65561B/12. http://doi.org/10.1117/12.721756

  30. Garland NL, McElvany SW (1998) Ionization potentials of TNAZ and its decomposition products. Chem Phys Lett 297(1,2):147–153. http://doi.org/10.1016/S0009-2614(98)01113-0

  31. Garland NL, Nelson HH (1998) Laser-induced decomposition of TNAZ. J Phys Chem B 102(15):2663–2667. https://doi.org/10.1021/JP980201D

    Article  CAS  Google Scholar 

  32. Hayashi K, Kumagai T, Nagao Y (2000) Improved synthesis of an energetic material, 1,3,3-trinitroazetidine exploiting 1-azabicyclo [1.1.0] butane. Heterocycles 53(2):447–452

    Article  CAS  Google Scholar 

  33. Hill LG, Seitz WL, Kramer JF, Murk DM, Medina RS (1996) Wedge test data for three new explosives: LAX112, 2,4-DNI, and TNAZ. In: AIP conference on proceedings 370 (Pt. 2, Shock Compression of Condensed Matter–1995), pp 803–806

    Google Scholar 

  34. Jadhav HS, Dhavale DD, Talawar MB, Asthana SN, Krishnamurthy VN (2003) 1-(3’,5’-dinitrophenyl)-3,3-dinitroazetidine: a new energetic materials. University of Pardubice, pp 153–159

    Google Scholar 

  35. Jadhav HS, Talawar MB, Dhavale DD, Asthana SN, Krishnamurthy VN (2006) Alternate method for synthesis of 1,3,3-trinitroazetidine (TNAZ): next generation melt-castable high-energy material. Indian J Chem Technol 13(1):41–46

    CAS  Google Scholar 

  36. Jalovy Z, Zeman S, Suceska M, Vavra P, Dudek K, Rajic M (2001) 1,3,3-trinitroazetidine (TNAZ), Part I syntheses and properties. J Energ Mater 19(2 & 3):219–239. https://doi.org/10.1080/07370650108216127

    Article  CAS  Google Scholar 

  37. Jizhen L, Xuezhong F, Xiping F, Fengqi Z, Rongzu H (2006) Compatibility study of 1,3,3-trinitroazetidine with some energetic components and inert materials. J Therm Anal Calorim 85(3):779–784. https://doi.org/10.1007/s10973-005-7370-8

    Article  CAS  Google Scholar 

  38. Katorov DV, Rudakov GF, Ladonin AV, Zhilin VF, Veselova EV, Vyalova NA (2007) Preparation of low-melting explosive compositions based on 1,3,3-trinitroazetidine. Cent Eur J Energ Mater 4(1–2):125–133

    CAS  Google Scholar 

  39. Katritzky AR, Cundy DJ, Chen J (1994) Novel syntheses of 1,3,3-trinitroazetidine. J Heterocycl Chem 31(2):271–275. https://doi.org/10.1002/jhet.5570310202

    Article  CAS  Google Scholar 

  40. Keshavarz MH (2007) Determining heats of detonation of non-aromatic energetic compounds without considering their heats of formation. J Hazard Mater 142(1–2):54–57. https://doi.org/10.1016/j.jhazmat.2006.07.057

    Article  CAS  Google Scholar 

  41. Keshavarz MH, Moghadas MH, Tehrani MK (2009) Relationship between the electrostatic sensitivity of nitramines and their molecular structure. Propellants Explos Pyrotech 34(2):136–141. https://doi.org/10.1002/prep.200700264

    Article  CAS  Google Scholar 

  42. Keshavarz MH, Yousefi MH (2008) Heats of sublimation of nitramines based on simple parameters. J Hazard Mater 152(3):929–933. https://doi.org/10.1016/j.jhazmat.2007.07.067

    Article  CAS  Google Scholar 

  43. Kim JS, Kim H, Kwon Y (2009) Synthesis of glycidyldinitroazetidine (GDNAZ) as an energetic monomers containing explosophoric group. In: International annual conference on ICT 40th (Energetic Materials), pp 53/1–53/11

    Google Scholar 

  44. Konrad S, Doris K (2000) Synthesis and properties of TNAZ. In: International annual conference on ICT 31st (Energetic Materials), pp 10/1–10/12

    Google Scholar 

  45. Lanzerotti MYD, Autera J, Sharma J (1996) Crystal growth of TNAZ during high acceleration. In: AIP conference proceedings 370 (Pt. 1, Shock Compression of Condensed Matter–1995), pp 243–246

    Google Scholar 

  46. Lanzerotti Y, Sharma J (2002) Mechanical behavior of energetic materials during high acceleration. In: AIP conference proceedings on 620 (Shock Compression of Condensed Matter, Pt. 2), pp 853–855

    Google Scholar 

  47. Lanzerotti Y, Sharma J (2003) Mechanical behavior of energetic materials during high acceleration. In: Materials research society symposium proceedings 759(Granular Material-Based Technologies), pp 155–159

    Google Scholar 

  48. Lanzerotti Y, Sharma J (2001) Mechanical behavior of energetic materials at high acceleration. Kluwer Academic/Plenum Publishers, pp 367–369

    Google Scholar 

  49. Li J, Zhang W, Wang B, Fan X, Liu Z (2005) Studies on the combustion characteristics and the thermal behavior of CMDB and NEPE propellants with 1,3,3-trinitroazetidine. Huozhayao Xuebao 28(2):16–20, 38

    Google Scholar 

  50. J-z Li, G-f Zhang, Fan X-z Hu, R-z Pan Q (2006) Thermal behavior of 1,3,3-trinitroazetidine. J Anal Appl Pyrolysis 76(1–2):1–5. https://doi.org/10.1016/j.jaap.2005.04.008

    Google Scholar 

  51. Liao L-Q et al (2012) Compatibility of PNIMMO with some energetic materials. J Therm Anal Calorim 109(3):1571–1576. https://doi.org/10.1007/s10973-011-1905-y

    Article  CAS  Google Scholar 

  52. Liu M-H, Chen C, Hong Y-S (2004) Empirical methods for estimating the detonation properties of energetic TNAZ molecular derivatives. J Theor Comput Chem 3(3):379–389. https://doi.org/10.1142/S0219633604001100

    Article  CAS  Google Scholar 

  53. Liu M-H, Chen C, Hong Y-S (2005) Theoretical study of the unimolecular decomposition mechanisms of energetic TNAD and TNAZ explosives. Int J Quantum Chem 102(4):398–408. https://doi.org/10.1002/qua.20284

    Article  CAS  Google Scholar 

  54. Long GT, Wight CA (2002) Thermal decomposition of a melt-castable high explosive: isoconversional analysis of TNAZ. J Phys Chem B 106(10):2791–2795. https://doi.org/10.1021/jp012859o

    Article  CAS  Google Scholar 

  55. Ma H-X et al (2010) Molecular structure, thermal behavior and adiabatic time-to-explosion of 3,3-dinitroazetidinium picrate. J Mol Struct 981(1–3):103–110. https://doi.org/10.1016/j.molstruc.2010.07.036

    Article  CAS  Google Scholar 

  56. Makhova NN, Ovchinnikov IV (2008) New variant of 1,3,3-trinitroazetidine synthesis. vol Pt. 2. University of Pardubice, pp 639–641

    Google Scholar 

  57. Marchand AP, Rajagopal D, Bott SG, Archibald TG (1995) A novel approach to the synthesis of 1,3,3-trinitroazetidine. J Org Chem 60(15):4943–4946. https://doi.org/10.1021/jo00120a049

    Article  CAS  Google Scholar 

  58. Marecek P, Dudek K (2002) Cast TNAZ mixtures. University of Pardubice, pp 164–168

    Google Scholar 

  59. Marecek P, Dudek K, Vavra P (2001) Laboratory testing of TNAZ mixtures. In: International annual conference on ICT 32nd (Energetic Materials), pp 90/1–90/8

    Google Scholar 

  60. McKenney RL Jr. et al (1998) Synthesis and thermal properties of 1,3-dinitro-3- (1’,3’-dinitroazetidin-3’-yl)azetidine (TNDAZ) and its admixtures with 1,3,3-trinitroazetidine (TNAZ). [Erratum to document cited in CA129:161458]. J Energ Mater 16(2 & 3):198–235

    Google Scholar 

  61. McKenney RL Jr et al (1998) Synthesis and thermal properties of 1,3-dinitro-3-(1,3-dinitro-3-azetidinyl) azetidine (TNDAZ) and its admixtures with 1,3,3-trinitroazetidine (TNAZ). J Energ Mater 16(1):1–22. https://doi.org/10.1080/07370659808216090

    Article  CAS  Google Scholar 

  62. McKenney RL Jr, Stevens WE (2000) Binary phase diagram series: 1,3,3-trinitroazetidine (TNAZ)/1,3,5-trinitrobenzene (TNB). J Energ Mater 18(4):241–273. https://doi.org/10.1080/07370650008219112

    Article  CAS  Google Scholar 

  63. McKenney RL Jr, Stevens WE, Floyd TG (1998) Binary phase diagram series: 1,3,3-trinitroazetidine (TNAZ)/2,4,6-trinitrotoluene (TNT). J Energ Mater 16(4):245–278. https://doi.org/10.1080/07370659808230234

    Article  CAS  Google Scholar 

  64. McKenney RL Jr, Stevens WE, Floyd TG (1999) Binary phase diagram series: 1,3,3-trinitroazetidine (TNAZ)/N-Acetyl-3,3-dinitroazetidine (ADNAZ). J Energ Mater 17(2 & 3):113–140. https://doi.org/10.1080/07370659908216099

    Article  CAS  Google Scholar 

  65. Mondal T, Saritha B, Ghanta S, Roy TK, Mahapatra S, Durga Prasad M (2009) On some strategies to design new high energy density molecules. J Mol Struct Theochem 897(1–3):42–47. https://doi.org/10.1016/j.theochem.2008.11.013

    Article  CAS  Google Scholar 

  66. Mostak P, Stancl M (2006) New trends in detection of explosives. University of Pardubice, pp 61–74

    Google Scholar 

  67. Nedel’ko VV et al (2009) Thermal decomposition of 1,3,3-trinitroazetidine in the gas phase, solution, and melt. Russ Chem Bull 58(10):2028–2034. https://doi.org/10.1007/s11172-009-0277-y

    Article  Google Scholar 

  68. Nedelko VV, Korsounskii BL, Chukanov NV, Larikova TS, Makhova NN, Ovchinnikov IV (2006) Thermal decomposition of 1,3,3-trinitroazetidine in gas, solution and melt. In: International annual conference on ICT 37th (Energetic Materials), pp 154/1–154/12

    Google Scholar 

  69. Oehrle SA (1994) Analysis of CL-20 and TNAZ in the presence of other nitroaromatic and nitramine explosives using HPLC with photodiode array (PDA) detection. J Energ Mater 12(4):211–222. https://doi.org/10.1080/07370659408018651

    Article  CAS  Google Scholar 

  70. Oehrle SA (1996) Analysis of nitramine and nitroaromatic explosives by micellar electrokinetic capillary chromatography (MECC). J Energ Mater 14(1):47–56. https://doi.org/10.1080/07370659608216057

    Article  CAS  Google Scholar 

  71. Oftadeh M, Khozani MH, Radhoosh M, Keshavarz MH (2011) DFT molecular orbital calculations of initial step in decomposition pathways of TNAZ and some of its derivatives with -F, -CN and -OCH3 groups. Comput Theor Chem 964(1–3):262–268. https://doi.org/10.1016/j.comptc.2011.01.007

    Article  CAS  Google Scholar 

  72. Oftadeh M, Selahvarzi S, Keshavarz MH (2013) Intermolecular interactions between TNAZ and H2O: a DFT study. Cent Eur J Energ Mater 10(2):289–300

    CAS  Google Scholar 

  73. Oxley J, Smith J, Zheng W, Rogers E, Coburn M (1997) Thermal Decomposition Pathways of 1,3,3-Trinitroazetidine (TNAZ), Related 3,3-Dinitroazetidium Salts, and 15 N, 13C, and 2H Isotopomers. J Phys Chem A 101(24):4375–4383. https://doi.org/10.1021/JP9700950

    Article  CAS  Google Scholar 

  74. Oxley JC, Kooh AB, Szekeres R, Zheng W (1994) Mechanisms of nitramine thermolysis. J Phys Chem 98(28):7004–7008. https://doi.org/10.1021/j100079a019

    Article  CAS  Google Scholar 

  75. Oyumi Y, Brill TB (1985) Thermal decomposition of energetic materials. 4. High-rate, in situ, thermolysis of the four, six, and eight membered, oxygen-rich, gem-dinitroalkyl cyclic nitramines, TNAZ, DNNC, and HNDZ. Combust Flame 62(3):225–231.https://doi.org/10.1016/0010-2180(85)90148-8

    Article  CAS  Google Scholar 

  76. Parr TP, Hanson-Parr DM (1996) Solid propellant diffusion flame structure. In: Symposium (International) combust, [Proceedings] 26th (vol 2):1981–1987

    Google Scholar 

  77. Persson B, Ostmark H, Bergman H (1997) An HPLC method for analysis of HNIW and TNAZ in an explosive mixture. Propellants Explos Pyrotech 22(4):238–239. https://doi.org/10.1002/prep.19970220411

    Article  CAS  Google Scholar 

  78. Pietrzyk S, Nowaczewski J, Bladek J (2007) Analysis of novel high energetic explosives: HNIW, TEX, TNAZ, DADNE. University of Pardubice, pp 853–858

    Google Scholar 

  79. Politzer P, Seminario JM (1993) Energy changes associated with some decomposition steps of 1,3,3-trinitroazetidine. A non-local density functional study. Chem Phys Lett 207(1):27–30. https://doi.org/10.1016/0009-2614(93)85006-A

    Article  CAS  Google Scholar 

  80. Porollo AA, Pivina TS, Ivshin VP (1998) Theoretical technique for modeling of 1,3,3-trinitroazetidine (TNAZ) thermal decomposition. In: Proceedings on international pyrotech seminar 24th, pp 445–455

    Google Scholar 

  81. Rice VM et al (2001) Theoretical chemistry: applications in energetic materials research. Khim Fiz 20(10):9–13

    CAS  Google Scholar 

  82. Sarlauskas J et al (2014) Modern nitramines TNAZ and CL-20 (HNIW): their electron-accepting potency, enzymatic reactivity and cytotoxicity. vol 2. University of Pardubice, Institute of Energetic Materials, pp 987–1004

    Google Scholar 

  83. Shao Y-H, Ren X-N, Liu Z-R (2010) An investigation on eutectic binary phase diagram of volatilizable energetic materials by high pressure DSC. J Therm Anal Calorim 101(3):1135–1141. https://doi.org/10.1007/s10973-009-0620-4

    Article  CAS  Google Scholar 

  84. Shao YH, Ren XN, Liu ZR, Zhang X (2011) Ternary phase diagrams of DNTF and TNAZ and their eutectics. J Therm Anal Calorim 103(2):617–623. https://doi.org/10.1007/s10973-010-0993-4

    Article  CAS  Google Scholar 

  85. Sheffield SA, Gustavsen RL, Alcon RR (1996) Hugoniot and initiation measurements on TNAZ explosive. In: AIP conference on proceedings 370 (Pt. 2, Shock Compression of Condensed Matter–1995), pp 879–882

    Google Scholar 

  86. Shu Y, Li H, Huang Y, Liu S (2003) Synthesis of N-acetyl-3,3-dinitroazetidine. University of Pardubice, pp 543–546

    Google Scholar 

  87. Sikder N, Sikder AK, Bulakh NR, Gandhe BR (2004) 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J Hazard Mater 113(1–3):35–43. https://doi.org/10.1016/j.jhazmat.2004.06.002

    Article  CAS  Google Scholar 

  88. Sikder N, Sikder AK, Bulakh NR, Gandhe BR (2004) 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J Hazard Mater 113(1–3):35–43

    Article  CAS  Google Scholar 

  89. Sikder N, Sikder AK, Bulakh NR, Gandhe BR (2004) 1,3,3-Trinitroazetidine (TNAZ), a melt-cast explosive: synthesis, characterization and thermal behaviour. J Hazard Mater 113(1–3):35–43. https://doi.org/10.1016/j.jhazmat.2004.06.002

    Article  CAS  Google Scholar 

  90. Simpson RL, Urtiew PA, Tarver CM (1996) Shock initiation of 1,3,3-trinitroazetidine (TNAZ). In: AIP conference on proceedings 370 (Pt. 2, Shock Compression of Condensed Matter–1995), pp 883–886

    Google Scholar 

  91. Sinditskii VP, Egorshev VY, Berezin MV, Rudakov GF, Ladonin AV, Katorov DV (2005) Combustion behavior and flame structure of a melt-castable high explosive 1,3,3-trinitroazetidine (TNAZ). In: International annual conference on ICT 36th (Energetic Materials), pp 78/1–78/7

    Google Scholar 

  92. Singh A, Sikder N, Sikder AK (2005) Improved synthesis of an energetic material, 1,3,3-trinitroazetidine (TNAZ) exploiting 2-iodoxy benzoic acid (IBX) as an oxidising agent. Indian J Chem, Sect B: Org Chem Incl Med Chem 44B(12):2560–2563

    CAS  Google Scholar 

  93. Suceska M, Rajic M, Zeman S, Jalovy Z (2001) 1,3,3-trinitroazetidine (TNAZ). Study of thermal behaviour. Part II. J Energ Mater 19(2 & 3):241–254 http://doi.org/10.1080/07370650108216128

  94. Suceska M, Zeman S, Rajic M, Jalovy Z (2001) Theoretical prediction of TNAZ detonation properties. University of Pardubice, pp 308–318

    Google Scholar 

  95. Suseska M, Rajis M, Matecis-Musanis S, Zeman S, Jalovy Z (2003) Kinetics and heats of sublimation and evaporation of 1,3,3-trinitroazetidine (TNAZ). J Therm Anal Calorim 74(3):853–866. https://doi.org/10.1023/B:JTAN.0000011017.65451.96

    Article  CAS  Google Scholar 

  96. Talawar MB et al (2006) Effect of organic additives on the mitigation of volatility of 1-nitro-3,3’-dinitroazetidine (TNAZ): next generation powerful melt castable high energy material. J Hazard Mater 134(1–3):8–18. https://doi.org/10.1016/j.jhazmat.2003.10.008

    Article  CAS  Google Scholar 

  97. Thompson CA, Rice JK, Russell TP, Seminario JM, Politzer P (1997) Vibrational analysis of 1,3,3-trinitroazetidine using matrix isolation infrared spectroscopy and quantum chemical calculations. J Phys Chem A 101(42):7742–7748. https://doi.org/10.1021/JP971173M

    Article  CAS  Google Scholar 

  98. Thompson CA, Russell TP, Concha MC, Politzer P (1997) Comparing quantum chemical calculations for azetidine strained ring compounds. American Chemical Society, pp COMP-125

    Google Scholar 

  99. Turker L (2013) Detonation velocity—a molecular aspect. Adv Chem Model 4:223–236

    CAS  Google Scholar 

  100. Turker L, Atalar T (2011) 1,3,3-Trinitroazetidine (TNAZ) and some of its constitutional isomers: a DFT study. vol 2. University of Pardubice, Institute of Energetic Materials, pp 982–993

    Google Scholar 

  101. Turker L, Varis S (2012) Desensitization of TNAZ via molecular structure modification and explosive properties—a DFT study. Acta Chim Slov 59(4):749–759

    CAS  Google Scholar 

  102. Veals JD, Thompson DL (2014) Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study. J Chem Phys 140(15):154306/1–154306/10 http://doi.org/10.1063/1.4870652

  103. Wakeham GP, Chung DD, Nelson KA (2002) Femtosecond time-resolved spectroscopy of energetic materials. Thermochim Acta 384(1–2):7–21. https://doi.org/10.1016/S0040-6031(01)00774-2

    Article  CAS  Google Scholar 

  104. Wilcox CF, Zhang YX, Bauer SH (2000) The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: models for calculating heats of formation. J Mol Struct: THEOCHEM 528:95–109. https://doi.org/10.1016/S0166-1280(99)00475-3

    Article  CAS  Google Scholar 

  105. Wilcox CF, Zhang YX, Bauer SH (2001) The thermochemistry of TNAZ (1,3,3-trinitroazetidine) and related species: G3(MP2)//B3LYP heats of formation. J Mol Struct: THEOCHEM 538:67–72. https://doi.org/10.1016/S0166-1280(00)00646-1

    Article  CAS  Google Scholar 

  106. Xue L, Zhao F-Q, Xing X-L, Gao H-X, Yi J-H, Hu R-Z (2009) Dissolution properties of 1,3,3-trinitroazetidine in ethyl acetate and N. N-dimethylformamide. Wuli Huaxue Xuebao 25(12):2413–2416

    CAS  Google Scholar 

  107. Yan B et al (2014) Thermodynamic properties, detonation characterization and free radical of N-2’,4’-dinitrophenyl-3,3-dinitroazetidine. J Chem Thermodyn 69:152–156. https://doi.org/10.1016/j.jct.2013.10.014

    Article  CAS  Google Scholar 

  108. Yan Q-L, Zeman S, Elbeih A (2012) Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta 537:1–12. https://doi.org/10.1016/j.tca.2012.03.009

    Article  CAS  Google Scholar 

  109. Yu CL, Zhang YX, Bauer SH (1998) Estimation of the equilibrium distribution of products generated during high temperature pyrolyses of 1,3,3-trinitroazetidine; thermochemical parameters. J Mol Struct: THEOCHEM 432(1):63–68. https://doi.org/10.1016/S0166-1280(97)87495-7

    Article  CAS  Google Scholar 

  110. Zeman S, Atalar T (2009) A new view of relationships of the N–N bond dissociation energies of cyclic nitramines. Part III. Relationship with detonation velocity. J Energ Mater 27(3):217–229. http://doi.org/10.1080/07370650802640374

  111. Zhang J, Hu J-W, Wang J-L, Chen L-Z (2011) Solubility of 1,3,3-trinitroazetidine in ethanol + water systems from (293.15 K to 323.15 K). J Solution Chem 40(4):703–708. http://doi.org/10.1007/s10953-011-9673-7

  112. Zhang J, Hu R, Zhu C, Feng G, Long Q (1997) Thermal behavior of 1,3,3-trinitroazetidine. Thermochim Acta 298(1–2):31–35. https://doi.org/10.1016/S0040-6031(97)00056-7

    Article  CAS  Google Scholar 

  113. Zhang J, Hu R, Zhu C, Feng G, Long Q (1996) Thermal behavior of 1,3,3-trinitroazetidine. Beijing Institute of Technology Press, pp 133–138

    Google Scholar 

  114. Zhang M, Shi Z, Bai Y, Gao Y, Hu R, Zhao F (2006) Using molecular recognition of β-Cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 17(2):189–193. https://doi.org/10.1016/j.jasms.2005.10.005

    Article  CAS  Google Scholar 

  115. Zhang X, Yang J, Wang T, Gong X, Wang G (2014) A theoretical study on the stability and detonation performance of 2,2,3,3-tetranitroaziridine (TNAD). J Phys Org Chem 27(6):532–539. https://doi.org/10.1002/poc.3297

    Article  CAS  Google Scholar 

  116. Zhang Y-X, Bauer SH (1998) Gas-Phase Pyrolysis of 1,3,3-trinitroazetidine: shock tube kinetics. J Phys Chem A 102(29):5846–5856. https://doi.org/10.1021/JP980931L

    Article  CAS  Google Scholar 

  117. Zhang Y-X, Bauer SH (1999) Gas-phase decomposition mechanisms of C-NO2, N-NO2 energetic materials: reevaluations. Int J Chem Kinet 31(9):655–673 http://doi.org/10.1002/(SICI)1097-4601(1999)31:9<655::AID-KIN7>3.0.CO;2-M

  118. Zhang Y-X, Bauer SH (1999) Gas-phase decomposition mechanisms of C-NO2, N-NO2 energetic materials: reevaluations. Int J Chem Kinet 31(9):655–673. http://doi.org/10.1002/(SICI)1097-4601(1999)31:9<655::AID-KIN7>3.0.CO;2-M

  119. Zhao Q, Zhang S, Li QS (2005) A direct ab initio dynamics study of the initial decomposition steps of gas phase 1,3,3-trinitroazetidine. Chem Phys Lett 412(4–6):317–321. https://doi.org/10.1016/j.cplett.2005.07.014

    Article  CAS  Google Scholar 

  120. Zhao Q, Zhang S, Li QS (2005) The influence of ring strain and conjugation on the reaction energies of the NO2 fission of nitramines: a DFT study. Chem Phys Lett 407(1–3):105–109. https://doi.org/10.1016/j.cplett.2005.03.059

    Article  CAS  Google Scholar 

  121. Zheng W, Dong X, Rogers E, Oxley JC, Smith JL (1997) Improvements in the determination of decomposition gases from 1,3,3-trinitroazetidine and 5-nitro-2,4-dihydro-3H-1,2,4-traizol-3-one using capillary gas chromatography-mass spectrometry. J Chromatogr Sci 35(10):478–482. https://doi.org/10.1093/chromsci/35.10.478

    Article  CAS  Google Scholar 

  122. Zheng W, Dong X, Rogers E, Oxley JC, Smith JL (1997) Improvements in the determination of decomposition gases from 1,3,3-trinitroazetidine and 5-nitro-2,4-dihydro-3H-1,2,4-traizol-3-one using capillary gas chromatography-mass spectrometry. J Chromatogr Sci 35(10):478–482. https://doi.org/10.1093/chromsci/35.10.478

    Article  CAS  Google Scholar 

  123. Zheng W, Rogers E, Coburn M, Oxley J, Smith J (1997) Mass spectral fragmentation pathways in 1,3,3-trinitroazetidine. J Mass Spectrom 32(5):525–532. https://doi.org/10.1002/(SICI)1096-9888(199705)32:5<525:AID-JMS505>3.0.CO;2-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dabir S. Viswanath .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 US Government (outside the USA)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Viswanath, D.S., Ghosh, T.K., Boddu, V.M. (2018). 1,3,3-Trinitroazetidine (TNAZ). In: Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1201-7_11

Download citation

Publish with us

Policies and ethics