Skip to main content
Log in

Tautomers of homophthalic anhydride in the ground and excited electronic states: analysis through energy, hardness and vibrational signatures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The keto-enol tautomerisation in homophthalic anhydride (HA) is investigated in the ground (S0) and excited (S1) electronic states. The keto form with a dicarbonyl structure is found to be the most stable form in S0 and enol form with a monocarbonyl structure in S1 indicating an excited state intramolecular proton transfer (ESIPT) process. The computed results show consistency with the change in basis sets and methods of calculations. Apart from the two tautomers, transition states are also identified. The barrier to interconversion is found to reduce substantially in S1. Internal reaction coordinate (IRC) calculations confirm the pathway of interconversion between the two forms in S0 and S1. The observed FT-IR spectra corroborate well with our computed spectra. The appearance of two strong lines around 1800 cm−1 confirms the lowest energy structure to be the keto tautomer with a dicarbonyl form in S0. Our computations corroborate well with the crystal structure data for an analogous molecule. Electron distribution in HOMO and LUMO indicate the excitation process as π → π* in nature. The qualitative chemical concepts like hardness and electrophilicity are calculated to estimate the stability of the tautomers. The energy and hardness profiles with the variation of IRC are opposite to each other, verifying the principle of maximum hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu T, Liu B (2016) Establishing new mechanisms with triplet and singlet excited-state hydrogen bonding roles in photoinduced liquid dynamics. Int Rev Phys Chem 35:187–208. https://doi.org/10.1080/0144235X.2016.1148450

    Article  CAS  Google Scholar 

  2. Antonov L (2016) Tautomerism: concepts and applications in science and technology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Zhao J, Chen J, Cui Y, Wang J, Xia L, Dai Y, Song P, Ma P (2015) A questionable excited-state double-proton transfer mechanism for 3-hydroxyisoquinoline. Phys Chem Chem Phys 17:1142–1150. https://doi.org/10.1039/C4CP04135F

    Article  CAS  PubMed  Google Scholar 

  4. Antonov L (2019) Tautomerism in azo and azomethyne dyes: when and if theory meets experiment. Molecules 24:2252. https://doi.org/10.3390/molecules24122252

    Article  CAS  PubMed Central  Google Scholar 

  5. Relph RA, Guasco TL, Elliott BM, Kamrath MZ, McCoy AB, Steele RP, Schofield DP, Jordan KD, Viggiano AA, Ferguson EE, Johnson MA (2010) How the shape of an H-bonded network controls proton-coupled water activation in HONO formation. Science 327(5963):308–312. https://doi.org/10.1126/science.1177118

    Article  CAS  PubMed  Google Scholar 

  6. Peljo P, Qiao L, Murtomäki L, Johans C, Girault HH, Kontturi K (2013) Electrochemically controlled proton-transfer-catalyzed reactions at liquid–liquid interfaces: nucleophilic substitution on ferrocene methanol. Chemphyschem 14(2):311–314. https://doi.org/10.1002/cphc.201200953

    Article  CAS  PubMed  Google Scholar 

  7. Jacquemin D, Zuniga J, Requena A, Pedro C-CA (2014) Assessing the importance of proton transfer reactions in DNA. Acc Chem Res 47:2467–2474. https://doi.org/10.1021/ar500148c

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Sevilla MD (2010) Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem Rev 110(12):7002–7023. https://doi.org/10.1021/cr100023g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Marshall M, Collins E, Marquez S, Mu BKH, Zhang X (2019) Intramolecular electron-induced proton transfer and its correlation with excited-state intramolecular proton transfer. Nat Commun 10:1170. https://doi.org/10.1038/s41467-019-09154-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng H, Huang P, Yi P, Xu F, Sun L (2018) Theoretical studies of π-electron delocalization and localization on intramolecular proton transfer in the ground state. J Mol Struct 1154:590–595. https://doi.org/10.1016/j.molstruc.2017.10.079

    Article  CAS  Google Scholar 

  11. Vérité PM, Guido CA, Jacquemin D (2019) First-principles investigation of the double ESIPT process in a thiophene-based dye. Phys Chem Chem Phys 21:2307–2317. https://doi.org/10.1039/C8CP06969G

    Article  PubMed  Google Scholar 

  12. Yepes D, Murray JS, Politzer P, Jaque P (2012) The reaction force constant: an indicator of the synchronicity in double proton transfer reactions. Phys Chem Chem Phys 14:11125–11134. https://doi.org/10.1039/c2cp41064h

    Article  CAS  PubMed  Google Scholar 

  13. Yepes D, Murray JS, Santos JC, Toro-Labbe A, Politzer P, Jaque P (2013) Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. J Mol Model 19:2689–2697. https://doi.org/10.1007/s00894-012-1475-3

    Article  CAS  PubMed  Google Scholar 

  14. Yepes D, Jaque P, Martinez-Araya JI (2019) Scrutinizing the substituent effect on Mo-based electrocatalysts for molecular hydrogen release through axial–equatorial decomposition: a DFT study. Phys Chem Chem Phys 21:16601–16614. https://doi.org/10.1039/c9cp00670b

    Article  CAS  PubMed  Google Scholar 

  15. Ghosh AK, Chatterjee P, Chakraborty T (2014) Keto-enol tautomerization and intermolecular proton transfer in photoionized cyclopentanone dimer in the gas phase. J Chem Phys 141:044303. https://doi.org/10.1063/1.4890501

    Article  CAS  PubMed  Google Scholar 

  16. Findlay JA, Buthelezi S, Lavoie R, Rodrigue L (1995) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58:1759–1766. https://doi.org/10.1021/np50125a021

    Article  CAS  PubMed  Google Scholar 

  17. Chiang Y, Kresge AJ, Meng Q, O’Ferrall RAM, Zhu Y (2001) Keto-enol/enolate equilibria in the isochroman-4-one system, effect of a β-oxygen substituent J. Am Chem Soc 123:11562–11569. https://doi.org/10.1021/ja0112801

    Article  CAS  Google Scholar 

  18. Meepagala KM, Estep AS, Clausen BM, Becnel JJ (2018) Mosquitocidal activity of a naturally occurring isochroman and synthetic analogs from the plant pathogenic fungus, Diaporthe eres against Aedes aegypti (Diptera: Culicidae). J Med Entomol 55(4):969–974. https://doi.org/10.1093/jme/tjy016

    Article  CAS  PubMed  Google Scholar 

  19. Hong J, Wang Z, Levin A, Emge TJ, Floyd DM, Knapp S (2015) Dimerization and comments on the reactivity of homophthalic anhydride. Tetrahedron Lett 56(23):3001–3004. https://doi.org/10.1016/j.tetlet.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  20. Adoulaye D, Martin K, Moussa C, Léopold K, Odile NG, Jean-Pierre A, Saba A (2011) Antioxidant potentialities of 4-acyl isochroman-1,3-diones. Res J Chem Sci 1(5):88–90

    Google Scholar 

  21. Saeed A, Mumtaz A (2017) Novel isochroman-triazoles and thiadiazole hybrids: design, synthesis and antimicrobial activity. J Saudi Chem Soc 21:186–192. https://doi.org/10.1016/j.jscs.2015.04.004

    Article  CAS  Google Scholar 

  22. Bogdanov MG, Palamareva MD (2004) cis/trans-Isochromanones. DMAP induced cycloaddition of homophthalic anhydride and aldehydes. Tetrahedron 60:2525–2530. https://doi.org/10.1016/j.tet.2004.01.040

    Article  CAS  Google Scholar 

  23. Tamura Y, Wada A, Sasho M, Kita Y (1981) Cycloaddition of homophthalic anhydride: a new and simple route to linearly condensed phenolic compounds. Tetrahedron Lett 22:4283–4286. https://doi.org/10.1016/S0040-4039(01)82935-X

    Article  CAS  Google Scholar 

  24. Lockett-Walters B, Trujillo C, Twamley B, Connon S (2019) The base-catalysed Tamura cycloaddition reaction: calculation, mechanism, isolation of intermediates and asymmetric catalysis. Chem Commun 55:11283–11286. https://doi.org/10.1039/c9cc05064g

    Article  CAS  Google Scholar 

  25. Saba A, Sié Sib F, Faure R, Aycard JP (1996) NMR and AM1 study of the tautomeric equilibrium of isochroman-1, 3-diones. Spectrosc Lett 29:1649–1657. https://doi.org/10.1080/00387019608007154

    Article  CAS  Google Scholar 

  26. Mullay J (1987) In: Sen KD, Jorgensen CK (eds) Electronegativity, structure and bonding. Springer, Berlin, p 1

    Google Scholar 

  27. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  28. Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim, p 197

    Book  Google Scholar 

  29. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091. https://doi.org/10.1021/cr040109f

    Article  CAS  PubMed  Google Scholar 

  30. Koopmans TA (1933) ÜberdieZuordnung von Wellenfunktionen und Eigenwertenzu den einzelnen Elektroneneines Atoms. Physica 1:104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

    Article  CAS  Google Scholar 

  31. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci U S A 83(22):8440–8441. https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan S, Sola M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852. https://doi.org/10.1021/jp312750n

    Article  CAS  PubMed  Google Scholar 

  33. Torrent Sucarrat M, Duran M, Luis MJ, Sola M (2005) Generalizing the breakdown of the maximum hardness and minimum polarizabilities principles for nontotally symmetric vibrations to non-π-conjugated organic molecules. J Phys Chem A 109:615–621. https://doi.org/10.1021/jp0470804

    Article  CAS  PubMed  Google Scholar 

  34. Chattaraj PK (1996) The maximum hardness principle: an overview. Proc Indian Natl Sci Acad 62A:513–531

    Google Scholar 

  35. Anandan K, Kolandaive P, Kumaresan R (2005) Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide. Int J Quantum Chem 104:286–298. https://doi.org/10.1002/qua.20559

    Article  CAS  Google Scholar 

  36. Lahsen J, Ramos-Grez J (2006) Internal rotation of fluorinated butane compounds the maximum hardness principle and carbon-carbon rotational barrier. J Fluor Chem 127:373–376. https://doi.org/10.1016/j.jfluchem.2005.12.030

    Article  CAS  Google Scholar 

  37. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  38. Das L, Dey G, Chakraborty A (2014) Investigation of the structures, potential energy surface, transition states and vibrational frequencies of a vitamin E precursor-chroman in S0 and S1 states: DFT based computational study. Comput Theor Chem 1049:115–121. https://doi.org/10.1016/j.comptc.2014.10.008

    Article  CAS  Google Scholar 

  39. Chakraborty A (2013) Fluorescence excitation spectra, Raman spectra and structure of isochroman in its S1 (π,π*) state. Chem Phys 413:140–144. https://doi.org/10.1016/j.chemphys.2013.01.015

    Article  CAS  Google Scholar 

  40. Luková K, Nesvadba R, Uhlíková T, Obenchain DA, Wachsmuth D, Grabow J, Urban Š (2018) Ab initio conformational analysis of 1,2,3,4-tetrahydroquinoline and the high-resolution rotational spectrum of its lowest energy conformer. Phys Chem Chem Phys 20:14664–14670. https://doi.org/10.1039/c8cp00953h

    Article  CAS  PubMed  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  42. Burke K, Perdew JP, Wang Y (1998, 1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum

  43. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X and M06-HF density functionals for conformationally flexible anionic clusters M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600. https://doi.org/10.1021/jp408166m

    Article  CAS  PubMed  Google Scholar 

  44. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  45. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) Toward a systematic molecular orbital theory for excited states. J Phys Chem 96:135–149. https://doi.org/10.1021/j100180a030

    Article  CAS  Google Scholar 

  46. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  47. Dunning Jr TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  48. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors. J Phys Chem 100:16502–16513. https://doi.org/10.1021/jp960976r

    Article  CAS  Google Scholar 

  49. Jamróz MH (2004) Vibrational energy distribution analysis VEDA 4. Warsaw

  50. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56. https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

    Article  CAS  Google Scholar 

  51. Gaussian09 (Revision B.1), Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakat-suji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Montgomery JA, Peralta J E, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  52. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  53. Abou A, Goulizan Bi SD, Kaboré L, Djandé A, Saba A, Kakou-Yao R (2009) Crystal structure of 4-(1-hydroxypropyl)-isochroman-1,3-dione. Z Naturforsch 64b:328–330. https://doi.org/10.1515/znb-2009-0313

    Article  Google Scholar 

  54. Schnekenburger J (1965) Acylderivate des Homophthalsäureanhydrids 2. Mitt. über Acylderivate methylenaktiver Dicarbonylverbindungen. Arch Pharm 298:4–18. https://doi.org/10.1002/ardp.19652980103

    Article  CAS  Google Scholar 

  55. Baldridge KK, Gordon MS, Steckler R, Truhlar DG (1989) Ab initio reaction paths and direct dynamics calculations. J Phys Chem 93:5107–5119. https://doi.org/10.1021/j100350a018

    Article  CAS  Google Scholar 

  56. Dey G, Chakraborty A Investigation of tautomerisation and characterization of transition states in acyl isochroman-1,3-diones in S0 and S1, (to be communicated shortly)

  57. Chaban GM, Gordon MS (1999) The ground and excited state hydrogen transfer potential energy surface in 7-azaindole. J Phys Chem A 103:185–189. https://doi.org/10.1021/jp9837838

    Article  CAS  Google Scholar 

  58. Yang J, Wagner M, Laane J (2007) Fluorescence and ultraviolet absorption spectra, and the structure and vibrations of 1, 2, 3, 4-tetrahydronaphthalene in its S1 (π,π*) state. J Phys Chem A 111(34):8429–8438. https://doi.org/10.1021/jp073752p

    Article  CAS  PubMed  Google Scholar 

  59. Chakraborty A, Das L (2017) Conformational landscape, stability, potential energy curves and vibrations of 1,2,3,4 tetrahydroquinoline. J Mol Struct 1136:80–89. https://doi.org/10.1016/j.molstruc.2017.01.078

    Article  CAS  Google Scholar 

  60. Das S, Das L, Chakraborty A (2020) Conformers of 1,2,3,4–tetrahydroisoquinoline in S0 and S1: an analysis through potential energy surface, hardness principles and vibrational spectroscopy. J Mol Struct 1207:127836. https://doi.org/10.1016/j.molstruc.2020.127836

    Article  CAS  Google Scholar 

  61. Chakraborty A, Das L (2020) Investigating the conformers of 1, 2, 3, 4-tetrahydroquinoxaline: a combined theoretical and experimental investigation through potential energy surface studies, FT-IR and UV-Vis absorption measurements. J Mol Struct 1211:128064. https://doi.org/10.1016/j.molstruc.2020.128064

    Article  CAS  Google Scholar 

  62. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747. https://doi.org/10.1126/science.218.4574.747

    Article  CAS  PubMed  Google Scholar 

  63. Padmaja L, Ravikumar C, Sajan D, Joe H, Jayakumar VS, Petti GR, Faurskov-Nielsen O (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 40:419–428. https://doi.org/10.1002/jrs.2145

    Article  CAS  Google Scholar 

  64. Belpassi L, Tarantelli F, Pirani F, Candoric P, Cappelletti D (2009) Experimental and theoretical evidence of charge transfer in weakly bound complexes of water. Phys Chem Chem Phys 11:9970–9975. https://doi.org/10.1039/b914792f

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

AC gratefully acknowledges the support received from University Grants Commission through a research project (F. No. 37-560/2009(SR)) for conducting this work. The authors also acknowledge the instrumental support from DST (Govt. of India) under departmental FIST programme of University of Burdwan (Grant No. SR/FST/PS-II-/2018/52(C)) and University Grants Commission (UGC) for departmental CAS (Grant No. F.530/20/CAS-II/2018(SAP-I)) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 112 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, G., Chakraborty, A. Tautomers of homophthalic anhydride in the ground and excited electronic states: analysis through energy, hardness and vibrational signatures. J Mol Model 26, 173 (2020). https://doi.org/10.1007/s00894-020-04411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04411-7

Keywords

Navigation