Skip to main content
Log in

Hemiaminal route for the formation of interstellar glycine: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Calculations related to two simple two-step paths (path-I: \( {\mathrm{H}}_2\mathrm{C}=\mathrm{O}+\mathrm{N}{\mathrm{H}}_3\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine}, \) path-II: \( {\mathrm{H}}_2\mathrm{C}=\mathrm{NH}+{\mathrm{H}}_2\mathrm{O}\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine} \)) for the formation of glycine have been discussed. Calculations show that at interstellar conditions these two paths are feasible only in hot cores, not in the cold interstellar clouds (cold core formation is possible only if CH2 = NH, H2O (excess) and CO of path-II, react in a concerted manner). For the laboratory synthesis of glycine, the possibility suggested is via path-I and the reaction being carried out as controlled temperature one-pot synthesis. This study can also be extended to other α-amino acids and possibly enantiomeric excess can be expected. We think this work will not only be able to enrich our future understanding about the formation of amino acids in interstellar medium but also be able to suggest alternative paths for laboratory synthesis of amino acids using either Strecker’s or Miller’s ingredients.

Using computational calculations, two different reaction paths which go through a hemiaminal (α-hydroxyamine) intermediate have been proposed. It has been proposed that the reaction \( {\mathrm{H}}_2\mathrm{C}=\mathrm{O}+\mathrm{N}{\mathrm{H}}_3\to \upalpha -\mathrm{hydroxyamine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine}, \) is a thermodynamically favorable reaction path in the laboratory conditions, if carried out as a controlled temperature one-pot synthesis. On the hand, it has been argued that the reaction\( {\mathrm{H}}_2\mathrm{C}=\mathrm{NH}+{\mathrm{H}}_2\mathrm{O}\to \upalpha -\mathrm{hydroxy}\ \mathrm{amine}\ \overset{+\mathrm{CO}}{\to }\ \mathrm{glycine} \) is a feasible reaction path in the interstellar conditions, if it proceeds not via the hemiaminal route, rather in a concerted reaction path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114:285–366

    CAS  PubMed  Google Scholar 

  2. Herbst E (2001) The chemistry of interstellar space. Chem. Soc. Rev. 30:168–176

    CAS  Google Scholar 

  3. Kaiser RI (2002) Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral−neutral reactions. Chem. Rev. 102:1309–1358

    CAS  PubMed  Google Scholar 

  4. Brown RD, Godfrey PD, Storey JWV, Bassez MP (1978) Microwave-spectrum and conformation of glycine. J. Chem. Soc. Chem. Commun.:547–548

  5. Kuan Y-J, Charnley SB, Huang H–C, Tseng W–L, Kisiel Z (2003) Interstellar Glycine. Astrophys. J. 593: 848–867

    CAS  Google Scholar 

  6. Hollis JM, Pedelty JA, Snyder LE, Jewell PR, Lovas FJ, Palmer P, Liu S.–Y (2003) A sensitive very large array search for small-scale glycine emission toward OMC-1. Astrophys. J. 588: 353–359

    CAS  Google Scholar 

  7. Snyder LE, Lovas FJ, Hollis JM, Friedel DN, Jewell PR, Remijan A, Ilyushin VV, Alekseev EA, Dyubko SF (2005) A rigorous attempt to verify interstellar glycine. Astrophys. J. 619:914–930

    CAS  Google Scholar 

  8. Pizzarello S (2006) The chemistry of life’s origin: a carbonaceous meteorite perspective. Acc. Chem. Res. 39:231–237

    CAS  PubMed  Google Scholar 

  9. Burton AS, Stern JC, Elsila JE, Galvin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41:5459–5472

    CAS  PubMed  Google Scholar 

  10. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. 107:2763–2768

    CAS  PubMed  Google Scholar 

  11. Cronin JR, Pizarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    CAS  PubMed  Google Scholar 

  12. Engel MH, Nagy B (1982) Distribution and enantiomeric composition of amino acids in the Murchison meteorite. Nature 296:837–840

    CAS  Google Scholar 

  13. Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    CAS  PubMed  Google Scholar 

  14. Engel MH, Macko SA, Silfer JA (1990) Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature 348:47–49

    CAS  PubMed  Google Scholar 

  15. Callahan MP, Burton AS, Elsila JE, Baker EM, Smith KE, Glavin DP, Dworkin JP (2013) A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry. Meteorit. Planet. Sci.:48: 786–48: 795

    CAS  Google Scholar 

  16. Brown PG, Hildebrand AR, Zolensky MF, Grady M, Clayton RN, Mayeda TK, Tagliaferri E, Spalding R, MacRae ND, Hoffman EJ, Mittlefehldt DW, Wacker JF, Andrew Bird J, Campbell MD, Carpenter R, Gingerich H, Glatiotis M, Greiner E, Mazur MJ, McCausland PJA, Plotkin H, Mazur TR (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290:320–325

    CAS  PubMed  Google Scholar 

  17. Hiroi T, Zolensky ME, Pieters CM (2001) The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293:2234–2236

    CAS  PubMed  Google Scholar 

  18. Lawless JG, Kvenvolden KA, Peterson E, Ponnamperuma C, Moore C (1971) Amino acids indigenous to the Murray meteorite. Science 173:626–627

    CAS  PubMed  Google Scholar 

  19. Elsila JE, Glavin D, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44:1323–1330

    CAS  Google Scholar 

  20. Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Annalen der Chemie und Pharmazie 75:27–45

    Google Scholar 

  21. Strecker A (1854) Ueber einen neuen aus Aldehyd – Ammoniak und Blausäure entstehenden Körper (p ). Annalen der Chemie und Pharmazie 91:349–351

    Google Scholar 

  22. Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    CAS  PubMed  Google Scholar 

  23. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 13:245–251

    Google Scholar 

  24. Bada JL (2013) New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 42:2186–2196

    CAS  PubMed  Google Scholar 

  25. Wang L–P, Titov A, McGibbon R, Liu F, Pande VS, Martínez TJ (2014) Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6: 1044–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford CT, USA

    Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652

    CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–789

    CAS  Google Scholar 

  29. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 109:7764–7776

    CAS  Google Scholar 

  30. Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 110:7650–7657

    CAS  Google Scholar 

  31. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) Gaussian-3 theory using reduced Møller-Plesset order. J. Chem. Phys. 110:4703–4709

    CAS  Google Scholar 

  32. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127:124105

    PubMed  Google Scholar 

  33. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a Hessian based predictor-corrector integrator. J. Chem. Phys. 120:9918–9924

    CAS  PubMed  Google Scholar 

  34. Ospina E, Villaveces JL (1993) Theoretical calculation of the reaction mechanism between ammonia and formaldehyde. J Mol Struct:THEOCHEM 287:201–209

    Google Scholar 

  35. Bhasi P, Nhlabatsi ZP, Sitha S (2016) Expanding the applicability of electrostatic potentials to the realm of transition states. Phys. Chem. Chem. Phys. 18:13002–13009

    CAS  PubMed  Google Scholar 

  36. Shannon RJ, Blitz MA, Goddard A, Heard DE (2013) Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat. Chem. 5:745–749

    CAS  PubMed  Google Scholar 

  37. Smith IWM, Ravishankara AR (2002) Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. J. Phys. Chem. A 106:4798–4807

    CAS  Google Scholar 

  38. Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2=NH, CO2 and H2. Phys. Chem. Chem. Phys. 18:20109–20117

    CAS  PubMed  Google Scholar 

  39. Pal R, Nagendra G, Samarasimhareddy M, Sureshbabu VV, Guru Row TN (2015) Observation of a reversible isomorphous phase transition and an interplay of “σ-holes” and “π-holes” in Fmoc-Leu-ψ[CH2-NCS]. Chem. Commun. 51:933

    CAS  Google Scholar 

  40. Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sanchez G, Elguero J (2012) Competition and interplay between σ-hole and π-hole interactions: a computational study of 1:1 and 1:2 complexes of nitryl halides (O2NX) with ammonia. J. Phys. Chem. A 116:5199

    CAS  PubMed  Google Scholar 

  41. Bauza A, Mooibroek TJ, Frontera A (2015) The bright future of unconventional σ/π-hole interactions. Chemphyschem 16:2496

    CAS  PubMed  Google Scholar 

  42. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) Σ-holes, π-holes and electrostatically-driven interactions. J. Mol. Model. 18:541–548

    CAS  PubMed  Google Scholar 

  43. Baymak MS, Zuman P (2007) Equilibria of formation and dehydration of the carbinolamine intermediate in the reaction of benzaldehyde with hydrazine. Tetrahedron 63:5450–5454

    CAS  Google Scholar 

  44. Evans DA, Borg G, Scheidt KA (2002) Remarkably stable tetrahedral intermediates: carbinols from nucleophilic additions to N-acylpyrroles. Angew. Chem. Int. Ed. 41:3188–3191

    CAS  Google Scholar 

  45. Hooley RJ, Iwasawa T, Rebek Jr J (2007) Detection of reactive tetrahedral intermediates in a deep cavitand with an introverted functionality. J. Am. Chem. Soc. 129:15330–15339

    CAS  PubMed  Google Scholar 

  46. Iwasawa T, Hooley RJ, Rebek Jr J (2007) Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 317:493–496

    CAS  PubMed  Google Scholar 

  47. Xu L, Hua S, Li S (2013) Insight into the reaction between a primary amine and a cavitand with an introverted aldehyde group: an enzyme-like mechanism. Chem. Commun. 49:1542–1544

    CAS  Google Scholar 

  48. Kawamichi T, Haneda T, Kawano M, Fujita M (2009) X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461:633–635

    CAS  PubMed  Google Scholar 

  49. Morris W, Doonan CJ, Yaghi OM (2011) Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. Inorg. Chem. 50:6853–6855

    CAS  PubMed  Google Scholar 

  50. Dolotko O, Wiench JW, Dennis KW, Pecharsky VK, Balema VP (2010) Mechanically induced reactions in organic solids: liquid eutectics or solid-state processes? New J. Chem. 34:25–28

    CAS  Google Scholar 

  51. For a complete up-to-date list of interstellar and circumstellar molecules, see http://www.astrochymist.org/astrochymist_ism.html and http://www.astro.uni-koeln.de/cdms/molecules. (Webpages were last accessed on 22ND July 2019)

  52. Tennyson J (2003) “Molecules in space” in “Handbook of Molecular Physics and Quantum Chemistry” Eds. Wilson S 3:356–369

    CAS  Google Scholar 

  53. Menten KM, Wyrowski F (2011) Molecules detected in interstellar space in “Interstellar Molecules”, 241: 27-42

  54. Yamada KMT, Winnewisser G (2011) List of molecules observed in interstellar space in “Interstellar Molecules”, 241: 219-223

  55. Müller HSP, Schlöder F, Thorwirth S, Winnewisser G (2004) The cologne database for molecular spectroscopy, CDMS in “The Dense Interstellar Medium in Galaxies”, 91: 95-98

  56. Snyder LE, Buhl D, Zuckerman B, Palmer P (1969) Microwave detection of interstellar formaldehyde. Phys. Rev. Lett. 22:679–681

    CAS  Google Scholar 

  57. Nguyen-Q-Rieu GD, Bujarrabal V (1984) Ammonia and cyanotriacetylene in the envelopes of CRL 2688 and IRC + 10216. Astron. Astrophys. 138:L5–L8

    CAS  Google Scholar 

  58. Ziurys LM (2006) The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. U. S. A. 103:12274–12279

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Godfrey PD, Brown RD, Robinson BJ, Sinclair MW (1973) Discovery of interstellar methanimine (formaldimine). Astrophys Lett 13:119–121

    CAS  Google Scholar 

  60. Dickens JE, Irvine WM, DeVries CH, Ohishi M (1997) Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH). Astrophys. J. 479:307–312

    CAS  PubMed  Google Scholar 

  61. Salter CJ, Ghosh T, Catinella B, Lebron M, Lerner MS, Minchin R, Momjian E (2008) The arecibo ARP 220 spectral census. I. Discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules. Astron. J. 136:389–399

    CAS  Google Scholar 

  62. Dyson JE, Williams DA (1997) The physics of the interstellar medium. Series in astronomy and astrophysics2nd edn. Bristol, Institute of Physics

    Google Scholar 

  63. Garrod RT, Weaver SLW (2013) Simulations of hot-core chemistry. Chem. Rev. 113:8939–8960

    CAS  PubMed  Google Scholar 

  64. van Dishoeck EF, Blake GA (1998) Chemical evolution of star-forming regions. Ann Rev Astron Astrophys 36:317–368

    Google Scholar 

  65. http://astronomy.swin.edu.au/cosmos/I/interstellar+gas+cloud. (Webpage was last accessed on 22nd July 2019)

  66. Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys. Chem. Chem. Phys. 18:375–381

    CAS  PubMed  Google Scholar 

  67. Bhasi P, Nhlabatsi ZP, Sitha S (2015) Reaction between HN and SN: a possible channel for the interstellar formation of N2 and SH in the cold interstellar clouds. Phys. Chem. Chem. Phys. 17:32455–32463

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors like to thank University of Johannesburg for support. ZPN and PB carried out this work while doing their PhD works at University of Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyasi Sitha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Energetics data related to the potential energy surfaces for the reactions 1–3, calculated using various methods and basis sets (discussed in the computational section) are tabulated in Table S1 and S2. Also provided with are the optimized Cartesian coordinates of all the stationary points.

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhlabatsi, Z.P., Bhasi, P. & Sitha, S. Hemiaminal route for the formation of interstellar glycine: a computational study. J Mol Model 25, 335 (2019). https://doi.org/10.1007/s00894-019-4224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4224-z

Keywords

Navigation