Skip to main content
Log in

Hydrogenations of Isocyanic Acid: A Computational Study on Four Possible Concerted Paths for Formamide Formation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Interstellar formations and significances of formamide as a possible prebiotic precursor, for many complex organic molecules of life are well studied in recent times. In this work, computational studies (B3LYP, wB97xD, MP2, and CCSD(T)) have been carried out to study the formation mechanism of formamide, from HNCO + H2, via concerted paths. Beside the well-studied, Direct Route, three new routes, imine, carbene and Oxime intermediate routes have been investigated. Carbene and oxime routes were found to be endothermic and hence may not be useful in interstellar circumstances. On the other hand, imine route, being slightly exothermic, may be considered as an auxiliary channel to the direct route. Detailed studies for these two routes have been carried out. Also, based only on a qualitative analysis of possibility of tunnelling, we have suggested the possible usefulness of these two reaction paths in cryogenic conditions of interstellar molecular clouds. We hope this study will be useful to our future understanding about the astrochemistry of formamide and origin of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Noble JA, Theule P, Congiu E, Dulieu F, Bonnin M, Bassas A, Duvernay F, Danger G, Chiavassa T (2015) Hydrogenation at low temperatures does not always lead to saturation: the case of HNCO. Astron Astrophys 576:A91

    Article  Google Scholar 

  2. Ferus M, Laitl V, Knizek A, Kubelík P, Sponer J, Kara J, Sponer JE, Lefloch B, Cassone G, Civis S (2018) HNCO-Based Synthesis of Formamide in Planetary Atmospheres. Astron Astrophys 616:A150

    Article  Google Scholar 

  3. Mendoza E, Lefloch B, Lopez-Sepulcre A, Ceccarelli C, Codella C, Boechat-Roberty HM, Bachiller R (2014) Molecules with a peptide link in protostellar shocks: a comprehensive study of L1157. Mon Not R Astrono Soc 445:151–161

    Article  CAS  Google Scholar 

  4. Lopez-Sepulcre A, Jaber AA, Mendoza E, Lefloch B, Ceccarelli C, Vastel C, Bachiller R, Cernicharo J, Codella C, Kahane C, Kama M, Tafalla M (2015) Shedding light on the formation of pre-biotic molecule formamide with ASAI. Mon Not R Astrono Soc 449:2438–2458

    Article  CAS  Google Scholar 

  5. Redondo P, Barrientos C, Largo A (2014) Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes. Astrophys J 793:1

    Article  Google Scholar 

  6. Song L, Kastner J (2016) Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations. Phys Chem Chem Phys 18:29278–29285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perry RA, Siebers DL (1986) Rapid reduction of nitrogen oxides in exhaust gas streams. Nature 324:657–658

    Article  CAS  Google Scholar 

  8. Haynes BS (1977) The oxidation of hydrogen cyanide in fuel-rich flames. Combust Flame 28:113–121

    Article  CAS  Google Scholar 

  9. Miller JA, Bowman CT (1991) Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid. Int J Chem Kinet 23:289–313

    Article  CAS  Google Scholar 

  10. Zyrianov M, DrozGeorget T, Sanov A, Reisler H (1996) Competitive photodissociation channels in jet cooled HNCO: thermochemistry and near threshold predissociation. J Chem Phys 105:8111–8116

    Article  CAS  Google Scholar 

  11. Brown SS, Cheatum CM, Fitzwater DA, Crim FF (1996) A simple model of the HNCO (1A′) excited state potential energy surface and a classical trajectory analysis of the vibrationally directed bondselected photodissociation. J Chem Phys 105:10911–10918

    Article  CAS  Google Scholar 

  12. Klossika JJ, Flothmann H, Schinke R, Bittererova M (1999) On the S1→S0 internal conversion in the photodissociation of HNCO. Chem Phys Lett 314:182–188

    Article  CAS  Google Scholar 

  13. Klossika JJ, Flothmann H, Beck C, Schinke R, Yamashita K (1997) The topography of the HNCO(S1) potential energy surface and its implications for photodissociation dynamics. Chem Phys Lett 276:325–333

    Article  CAS  Google Scholar 

  14. Stevens JE, Cui Q, Morokuma KJ (1998) An Ab initio study of the dissociation of HNCO in the S1 Electronic State. Chem Phys 108:1452–1458

    CAS  Google Scholar 

  15. Zyrianov M, Droz-Georget T, Reisler H (1999) Fragment recoil anisotropies in the photoinitiated decomposition of HNCO. J Chem Phys 110:2059–2068

    Article  CAS  Google Scholar 

  16. Sanov A, Droz-Georget Th, Zyrianov M, Reisler H (1997) Photofragment imaging of HNCO decomposition: angular anisotropy and correlated distributions. J Chem Phys 106:7013–7022

    Article  CAS  Google Scholar 

  17. Spiglanin TA, Perry RA, Chandler DW (1986) Photodissociation studies of HNCO: heat of formation and product branching ratios. J Phys Chem 90:6184–6189

    Article  CAS  Google Scholar 

  18. Woods E, Berghout HL, Cheatum CM, Crim FF (2000) Controlling the bimolecular reaction and photodissociation of HNCO through selective excitation of perturbed Vibrational States. J Phys Chem A 104:10356–10361

    Article  CAS  Google Scholar 

  19. Brown SS, Berghout HL, Crim FF (1995) Vibrational State controlled bond cleavage in the photodissociation of isocyanic acid (HNCO). J Chem Phys 102:8440–8447

    Article  CAS  Google Scholar 

  20. Klossika JJ, Schinke R (1999) The photodissociation of HNCO in the S1 Band: A Five-Dimensional classical trajectory study. J Chem Phys 111:5882–5896

    Article  CAS  Google Scholar 

  21. Yu SR, Su S, Dorenkamp Y, Wodtke AM, Dai DX, Yuan KJ, Yang XM (2013) Competition between direct and indirect dissociation pathways in ultraviolet photodissociation of HNCO. J Phys Chem A 117:11673–11678

    Article  CAS  PubMed  Google Scholar 

  22. Zyrianov M, DrozGeorget TH, Reisler H (1997) Competition between singlet and triplet channels in the photoinitiated decomposition of HNCO. J Chem Phys 106:7454–7457

    Article  CAS  Google Scholar 

  23. Brownsword RA, Laurent T, Hillenkamp M, Vatsa RK, Volpp H-R (1997) Dissociation dynamics of HNCO and DNCO after laser photoexcitation in the vacuum ultraviolet. J Chem Phys 106:9563–9569

    Article  CAS  Google Scholar 

  24. Ferus M, Pietrucci F, Saitta AM, Knizek A, Kubelik P, Ivanek O, Shestivska V, Civis S (2017) Formation of Nucleobases in a Miller-urey reducing atmosphere. Proc Natl Acad Sci USA 114:4306–4311

    Article  CAS  PubMed  Google Scholar 

  25. Ferus M, Nesvorny D, Sponer J, Kubelik P, Michalcikova R, Shestivska V, Sponer JE, Civis S (2015) High-energy chemistry of formamide: A Unified Mechanism of Nucleobase Formation. Proc Natl Acad Sci USA 112:657–662

    Article  CAS  PubMed  Google Scholar 

  26. Pietruccil F, Saitta AM (2015) Formamide reaction network in gas phase and solution via a unified theoretical approach: toward a reconciliation of different prebiotic scenarios. Proc Natl Acad Sci USA 112:15030–15035

    Article  Google Scholar 

  27. Saladino R, Botta G, Pino S, Costanzo G, Di Mauro E (2012) Genetics first or metabolism first? the formamide clue. Chem Soc Rev 41:5526–5565

    Article  CAS  PubMed  Google Scholar 

  28. Saladino R, Crestini C, Pino S, Costanzo G, Di Mauro E (2012) Formamide and the origin of life. Phys Life Rev 9:84–104

    Article  PubMed  Google Scholar 

  29. Niether D, Afanasenkau D, Dhont JKG, Wiegand S (2016) Accumulation of formamide in hydrothermal pores to form Prebiotic Nucleobases. Proc Natl Acad Sci USA 113:4272–4277

    Article  CAS  PubMed  Google Scholar 

  30. Saladino R, Crestini C, Ciciriello F, Costanzo G, Di Mauro E (2007) Formamide chemistry and the origin of informational polymers. Chem Biodivers 4:694–720

    Article  CAS  PubMed  Google Scholar 

  31. Sponer JE, Sponer J, Novakova O, Brabec V, Sedo O, Zdrahal Z, Costanzo G, Pino S, Saladino R, Di Mauro E (2016) Emergence of the first catalytic oligonucleotides in a formamide-based origin scenario. Chem Eur J 22:3572–3586

    Article  CAS  PubMed  Google Scholar 

  32. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A Possible Prebiotic Synthesis of Purine, Adenine, Cytosine, and 4(3H)-Pyrimidinone from Formamide: Implications for the Origin of Life. Bioorg Med Chem 9:1249–1253

    Article  CAS  PubMed  Google Scholar 

  33. Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Di Mauro E (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci USA 112:E2746–E2755

    Article  CAS  PubMed  Google Scholar 

  34. Saladino R, Crestini C, Neri V, Brucato JR, Colangeli L, Ciciriello F, Di Mauro E, Costanzo G (2005) Synthesis and degradation of nucleic acid components by formamide and cosmic dust analogues. ChemBioChem 6:1368–1374

    Article  CAS  PubMed  Google Scholar 

  35. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, Adenine, and Hypoxanthine Production in UV-Irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 11:1240–1243

    Article  CAS  PubMed  Google Scholar 

  36. Spezia R, Jeanvoine Y, Hase WL, Song K, Largo A (2016) Synthesis of formamide and related organic species in the interstellar medium via chemical dynamics simulations. Astrophys J 826:107

    Article  Google Scholar 

  37. Bada JL, Chalmers JH, Cleaves HJ II (2016) Is formamide a geochemically plausible prebiotic solvent? Phys Chem Chem Phys 18:20085–20090

    Article  CAS  PubMed  Google Scholar 

  38. Cassone G, Sponer J, Saija F, Di Mauro E, Saitta AM, Sponer JE (2017) Stability of 2′,3′ and 3′,5′ Cyclic nucleotides in formamide and in water: a theoretical insight into the factors controlling the accumulation of nucleic acid building blocks in a prebiotic pool. Phys Chem Chem Phys 19:1817–1825

    Article  CAS  PubMed  Google Scholar 

  39. Vazart F, Calderini D, Puzzarini C, Skouteris D, Barone V (2016) State-of-the-Art thermochemical and kinetic computations for astrochemical complex organic molecules: formamide formation in cold interstellar clouds as a case study. J Chem Theory Comput 12:5385–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov A, Krasavin E, Di Mauro E (2016) First evidence on the role of heavy ion irradiation of meteorites and formamide in the origin of biomolecules. Orig Life Evol Biosph 46:515–521

    Article  CAS  PubMed  Google Scholar 

  41. Barone V, Latouche C, Skouteris D, Vazart F, Balucani N, Ceccarelli C, Lefloch B (2015) Gas-phase formation of the prebiotic molecule formamide: insights from new Quantum computations. Mon Not R Astron Soc Lett 453:L31–L35

    Article  CAS  Google Scholar 

  42. Rotelli L, Trigo-Rodriguez JM, Moyano-Cambero CE, Carota E, Botta L, Di Mauro E, Saladino R (2016) The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Sci Rep 6: 38888

  43. Songa L, Kastner J (2016) Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations. Phys Chem Chem Phys 18:29278–29285

    Article  Google Scholar 

  44. Urso RG, Scire C, Baratta GA, Brucato JR, Compagnini G, Kanuchova Z, Palumbob ME, Strazzullab G (2017) Infrared study on the thermal evolution of solid state formamide. Phys Chem Chem Phys 19:21759–21768

    Article  CAS  PubMed  Google Scholar 

  45. Ferus M, Michalcikova R, Shestivska V, Sponer J, Sponer JE, Civis S (2014) High-Energy chemistry of formamide: a simpler way for nucleobase formation. J Phys Chem A 118:719–736

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Gu JD, Nguyen MT, Springsteen G, Leszczynski J (2013) From formamide to adenine: a self-catalytic mechanism for an abiotic approach. J Phys Chem B 117:14039–14045

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Gu JD, Nguyen MT, Springsteen G, Leszczynski J (2013) From formamide to purine: a self-catalyzed reaction pathway provides a feasible mechanism for the entire process. J Phys Chem B 117:9333–9342

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Gu JD, Nguyen MT, Springsteen G, Leszczynski J (2013) From formamide to purine: an energetically viable mechanistic reaction pathway. J Phys Chem B 117:2314–2320

    Article  CAS  PubMed  Google Scholar 

  49. Saitta AM, Saija F (2014) Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA 111:13768–13773

    Article  CAS  PubMed  Google Scholar 

  50. Sponer JE, Szabla R, Gora RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civis S, Sponer J (2016) Prebiotic synthesis of nucleic acids and their building blocks at the atomic level–merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 18:20047–20066

    Article  CAS  PubMed  Google Scholar 

  51. Saladino R, Di Mauro E, García-Ruiz JM (2019) A universal geochemical scenario for formamide condensation and prebiotic chemistry. Chem A Euro J 25:3181–3189

    Article  CAS  Google Scholar 

  52. Rubin RH, Swenson GW Jr, Beson RC, Tigelaar HL, Flygare WH (1971) Microwave detection of interstellar formamide. Astrophys J 169:L39

    Article  CAS  Google Scholar 

  53. Hollis JM, Lovas FJ, Remijan AJ, Jewell PR, Ilyushin VV, Kleiner I (2006) Detection of acetamide (CH3CONH2): The largest interstellar molecule with a peptide bond. Astrophys J 643:L25

    Article  CAS  Google Scholar 

  54. Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK et al (2000) New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astronom Astrophys 353:1101–1114

    CAS  Google Scholar 

  55. Grim RJA, Greenberg JM, DeGroot MS, Baas F, Schutte WA, Schmitt B (1989) Infrared spectroscopy of astrophysical ices: new insights in the photochemistry. Astronom Astrophys suppl 78:161–186

    CAS  Google Scholar 

  56. Kakumoto T, Saito K, Imamura A (1985) Thermal decomposition of formamide: shock tube experiments and ab initio calculations. J Phys Chem 89:2286–2291

    Article  CAS  Google Scholar 

  57. Nguyen VS, Abbott HL, Dawley MM, Orlando TM, Leszczynski J (2011) Theoretical study of formamide decomposition pathways. J Phys Chem A 115:841–851

    Article  CAS  PubMed  Google Scholar 

  58. Raunier S, Chiavassa T, Duvernay F, Borget F, Aycard JP, Dartois E, d’Hendecourt L (2004) Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices. Astronom Astrophys 416:165–169

    Article  CAS  Google Scholar 

  59. Taquet V, Lopez-Sepulcre A, Ceccarelli C, Neri R, Kahane C, Charnley SB (2015) Constraining the abundances of complex organics in the inner regions of solar-type protostars. Astrophys J 804:2

    Article  Google Scholar 

  60. Muller S, Beelen A, Black JH, Curran SJ, Horellou C, Aalto S, Combes F, Guelin M, Henkel C (2013) A precise and accurate determination of the cosmic microwave background temperature at z = 0.89. Astronom Astrophys 551: A109

  61. Bisschop SE, Jørgensen JK, van Dishoeck EF, de Wachter EBM (2007) Testing grain-surface chemistry in massive hot-core regions. Astronom Astrophys 465:913–929

    Article  CAS  Google Scholar 

  62. Kahane C, Ceccarelli C, Faure A, Caux E (2013) Detection of Formamide, the simplest but crucial amide, in a solar-type protostar. Astrophys J Lett 763:2

    Article  Google Scholar 

  63. Goesmann F, Rosenbauer H, Bredehoft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Kruger H, Le Roy L, MacDermott AJ, et al. (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349: aab0689–1–aab0689–3.

  64. Bockelee-Morvan D, Lis DC, Wink JE, Despois D, Crovisier J, Bachiller R, Benford DJ, Biver N, Colom P, Davies JK et al (2000) New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astronom Astrophys 353:1103–1114

    Google Scholar 

  65. Gahlaut A, Paranjothy M (2018) Unimolecular decomposition of formamide via direct chemical dynamics simulations. Phys Chem Chem Phys 20:8498–8505

    Article  CAS  PubMed  Google Scholar 

  66. Quenard D, Ilee JD, Jimenez-Serra I, Forgan DH, Hall C, Rice K (2018) The Fate of Formamide in a Fragmenting Protoplanetary Disk. Astrophys J 868:1

    Article  Google Scholar 

  67. Vazart F, Calderini D, Puzzarini C, Skouteris D, Barone V (2016) State-of-the-Art thermochemical and kinetic computations for astrochemical complex organic molecules: formamide formation in cold interstellar clouds as a case study. J Chem Theo Comput 12:5385–5397

    Article  CAS  Google Scholar 

  68. Back RA, Boden JC (1971) High-temperature photolysis and the pyrolysis of formamide vapour, and the thermal decomposition of the carbamyl radical. Trans Faraday Soc 67:88–96

    Article  CAS  Google Scholar 

  69. Nguyen VS, Orlando TM, Leszczynski J, Nguyen MT (2013) Theoretical study of the decomposition of formamide in the presence of water molecules. J Phys Chem A 117:2543–2555

    Article  CAS  PubMed  Google Scholar 

  70. Okazaki M, Funazukuri T (2006) Decomposition of acetamide and formamide in pressurized hot water. J Mater Sci 41:1517–1521

    Article  CAS  Google Scholar 

  71. van der Rest G, Mourgues P, Nedev H, Audier HE (2002) A Prototype for catalyzed amide bond cleavage: production of the [NH3, H2O].+ dimer from ionized formamide and its carbene isomer. J Am Chem Soc 124:5561–5569

    Article  PubMed  Google Scholar 

  72. Martell JM, Yu HT, Goddard JD (1997) Molecular decompositions of acetaldehyde and formamide: theoretical studies using hartree-fock, moller-plesset and density functional theories. Mol Phys 92:497–502

    CAS  Google Scholar 

  73. Liu D, Fang WH, Fu XY (2000) Ab initio molecular orbital study of the mechanism of photodissociation of formamide. Chem Phys Lett 318:291–297

    Article  CAS  Google Scholar 

  74. Petersen C, Dahl NH, Jensen SK, Poulsen JA, Thogersen J, Keiding SR (2008) Femtosecond photolysis of aqueous formamide. J Phys Chem A 112:3339–3344

    Article  CAS  PubMed  Google Scholar 

  75. Lundell J, Krajewska M, Rasanen M (1998) Matrix isolation fourier transform infrared and ab initio studies of the 193-nm-induced photodecomposition of formamide. J Phys Chem A 102:6643–6650

    Article  CAS  Google Scholar 

  76. Jones BM, Bennett CJ, Kaiser RI (2011) Mechanistical studies of the production of formamide (H2NCHO) within interstellar ice analogs. Astrophys J 734:78–90

    Article  Google Scholar 

  77. Rimola A, Skouteris D, Balucani N, Ceccarelli C, Enrique-Romero J, Taquet V, Ugliengo P (2018) Can formamide be formed on interstellar ice? an atomistic perspective. ACS Earth Space Chem 2:720–734

    Article  CAS  Google Scholar 

  78. Kanuchova Z, Urso RG, Baratta GA, Brucato JR, Palumbo ME, Strazzulla G (2016) Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures. Astronom Astrophys 585:A155

    Article  Google Scholar 

  79. Dulieu F, Nguyen T, Congiu E, Baouche S, Taquet V (2019) Efficient formation route of the prebiotic molecule formamide on interstellar dust grains. Mon Not R Astrono Soc Lett 484:L119–L123

    Article  CAS  Google Scholar 

  80. Redondo P, Barrientos C, Largo A (2014) Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes. Astrophys J 793:32

    Article  Google Scholar 

  81. Redondo P, Barrientos C, Largo A (2014) Some insights into formamide formation through gas-phase reactions in the interstellar medium. Astrophys J 780:181

    Article  Google Scholar 

  82. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  83. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  84. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a hessian based predictor-corrector integrator. J Chem Phys 120:9918–9924

    Article  CAS  PubMed  Google Scholar 

  85. Frisch MJ, Head-Gordon M, Pople JA (1990) Direct MP2 gradient method. Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  86. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  87. Purvis GD III, Bartlett RJ (1982) A full coupled-cluster singles and doubles model - the inclusion of disconnected triples. J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  88. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09. Gaussian Inc, Wallingford CT, USA

    Google Scholar 

  89. Shannon RJ, Blitz MA, Goddard A, Heard DE (2013) Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat Chem 5:745–749

    Article  CAS  PubMed  Google Scholar 

  90. Smith IWM, Ravishankara AR (2002) Role of hydrogen-bonded intermediates in the bimolecular reactions of the hydroxyl radical. J Phys Chem A 106:4798–4807

    Article  CAS  Google Scholar 

  91. Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of glycine through a concerted mechanism: A computational study on the reaction of CH2=NH, CO2 and H2. Phys Chem Chem Phys 18:20109–20117

    Article  CAS  PubMed  Google Scholar 

  92. Nhlabatsi ZP, Bhasi P, Sitha S (2016) Possible interstellar formation of Glycine from the reaction of CH2= NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport. Phys Chem Chem Phys 18:375–381

    Article  CAS  PubMed  Google Scholar 

  93. Bhasi P, Nhlabatsi ZP, Sitha S (2015) Reaction between HN and SN: A possible channel for the interstellar formation of N2 and SH in the cold interstellar clouds. Phys Chem Chem Phys 17:32455–32463

    Article  CAS  PubMed  Google Scholar 

  94. Bouchoux G, Espagne A (2001) Ionized aminohydroxycarbene and its isomers: relative stability and unimolecular reactivity. Chem Phys Lett 348:329–336

    Article  CAS  Google Scholar 

  95. Sander SP, Friedl RR, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Huie RE, Orkin VL, Molina MJ, Moortgat GK, Finlayson-Pitts BJ (2003) Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation No. 14; JPL Publication 02–25; National Aeronatuics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA.

  96. Dyson JE, Williams DA (1997) The Physics of the Interstellar Medium. Series in Astronomy and Astrophysics, 2nd Edition, Bristol: Institute of Physics.

  97. Garrod RT, Weaver SLW (2013) Simulations of hot-core chemistry. Chem Rev 113:8939–8960

    Article  CAS  PubMed  Google Scholar 

  98. van Dishoeck EF, Blake GA (1998) Chemical evolution of star-forming regions. Ann Rev Astron Astrophys 36:317–368

    Article  Google Scholar 

  99. Gibb EL, Whittet DCB, Boogert ACA, Tielens AGGM (2004) Interstellar Ice: The infrared space observatory legacy. Astrphys J Suppl 151:35

    Article  CAS  Google Scholar 

  100. Johansson LE, Andersson C, Ellder J, Friberg P, Hjalmarson A, Hoglund B, Irvine WM, Olofsson H, Rydbeck G (1984) Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz. Astron Astrophys 130:227–256

    CAS  PubMed  Google Scholar 

  101. Darla N, Sitha S (2019) Reaction between NH3 (X̌1A1) and CO (X1Σ+): A computational Insight into the reaction mechanism of formamide (H2N−CHO) formation. J Phys Chem A 123:8921–8931

    Article  CAS  PubMed  Google Scholar 

  102. Darla N, Sharma D, Sitha S (2019) Formation of formamide from HCN + H2O: A computational study on the roles of a second H2O as a catalyst, as a spectator, and as a reactant. J Phys Chem A 124:165–175

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors like University of Johannesburg for providing necessary facilities and support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyasi Sitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darla, N., Pant, D. & Sitha, S. Hydrogenations of Isocyanic Acid: A Computational Study on Four Possible Concerted Paths for Formamide Formation. Theor Chem Acc 140, 50 (2021). https://doi.org/10.1007/s00214-021-02750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02750-z

Keywords

Navigation