Skip to main content
Log in

Classical dynamics simulations of interstellar glycine formation via \(\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2}\hbox {O}\) reaction

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Formation of simple organic species such as glycine in the interstellar medium and transportation to earth via meteorites is considered to be a possible route for ‘Origin of Life’ on earth. Glycine formation has been proposed to occur via two different pathways involving formaldehyde (\(\hbox {HCHO}\)) and methanimine (\(\hbox {CH}_{2} = \hbox {NH}\)) as key intermediates. In the second pathway, which is the topic of this paper, \(\hbox {CH}_{2} = \hbox {NH}\) reacts with \(\hbox {CO}\) and \(\hbox {H}_{2} \hbox {O}\) forming neutral glycine. In a recent article (Nhlabatsi et al. in Phys. Chem. Chem. Phys. 18:375, 2016), detailed electronic structure calculations were reported for the reaction between \(\hbox {CH}_{2} = \hbox {NH}\), \(\hbox {CO}\) and \((\hbox {H}_{2} \hbox {O})_n\), \(n = 1, 2, 3\), and 4, forming glycine in the interstellar media. The presence of additional water molecule(s) for this reaction reduces reaction barrier - thus exhibiting a catalytic effect. This effect was described in terms of efficient proton transfer mediated by the additional water molecule through a relay transport mechanism. In the present article, we report ab initio classical trajectory simulations for the interstellar formation of glycine for the above mentioned reaction with \(n = 1\) and 2. The trajectories were generated on-the-fly over a density functional B3LYP/6-31++G(3df,2pd) potential energy surface. Our simulations indicate that the above proposed catalytic effect by the additional water molecule(s) may not be a classical effect.

Graphical Abstract

Synopsis: Glycine formation in the interstellar media via the \(\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2} \hbox {O}\) reaction was investigated by classical chemical dynamics simulations. This reaction has a large barrier which reduces in presence of additional water molecules. Our simulations indicate that the proposed catalytic effect by the additional water molecules may not be a classical effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herbst E and van Dishoeck E F 2009 The Complex Organic Interstellar Molecules Annu. Rev. Astron. Astrophys. 47 427

    Article  CAS  Google Scholar 

  2. Oro J 1961 Comets and the Formation of Biochemical Compounds on the Primitive Earth Nature 190 389

    Article  Google Scholar 

  3. Burton A S, Stern J C, Elsila J E, Glavin D P and Dworkin J P 2012 Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites Chem. Soc. Rev. 41 5459

    Article  CAS  Google Scholar 

  4. Ruiz-Mirazo K, Briones C and De la Escosura A 2014 Prebiotic Systems Chemistry: New Perspectives for the Origins of Life Chem. Rev. 114 285

    Article  CAS  Google Scholar 

  5. Kuan Y J, Charnley S B, Huang H C, Tseng W L and Kisiel Z 2003 Interstellar Glycine Astrophys. J. 593 848

    Article  CAS  Google Scholar 

  6. Elsila J E, Aponte J C, Blackmond D G, Burton A S, Dworkin J P and Glavin D P 2016 Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories ACS Cent. Sci. 2 370

    Article  CAS  Google Scholar 

  7. Love S G and Brownlee D E 1993 A Direct Measurement of the Terrestrial Mass Accretion Rate of Cosmic Dust Science 262 550

    Article  CAS  Google Scholar 

  8. Martins Z, Alexandera C M O, Orzechowska G E, Fogel M L and Ehrenfreund P 2007 Indigenous amino acids in primitive CR meteorites Meteorit. Planet. Sci. 42 2125

    Article  CAS  Google Scholar 

  9. Ehrenfreund P, Glavin D P, Botta O, Cooper G and Bada J L 2001 Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites Proc. Natl. Acad. Sci. U.S.A 98 2138

    Article  CAS  Google Scholar 

  10. Kvenvolden K A, Lawless J C and Ponnamperuma C 1971 Nonprotein Amino Acids in the Murchison Meteorite Proc. Natl. Acad. Sci. U.S.A 68 486

    Article  CAS  Google Scholar 

  11. Glavin D P, Bada J L,Brinton K L F and McDonald G D 1999 Amino acids in the Martian meteorite Nakhla Proc. Natl. Acad. Sci. U.S.A 96 8835

    Article  CAS  Google Scholar 

  12. Botta O, Glavin D P, Kminek G and Bada J L 2002 Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites Astrophys. J. 32 143

    CAS  Google Scholar 

  13. Schmitt-kopplin P, Gabelica Z, Gougeon R D, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G and Hertkorn N 2010 High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall Proc. Natl. Acad. Sci. U.S.A. 107 2763

    Article  CAS  Google Scholar 

  14. Pizzarello S, Davidowski S K, Holland G P and Williams L B 2013 Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments Proc. Natl. Acad. Sci. U.S.A. 110 15614

    Article  CAS  Google Scholar 

  15. Jimenez-Serra I, Testi L Caselli P and Viti A 2014 Detectability of Glycine in Solar-Type System Precursors Astrophys. J. Lett. 787 L33

    Article  Google Scholar 

  16. Snyder L E, Loves F J, Hollis J M, Friedel D N, Jewell P R, Remijan A, Ilyushin V V, Alekseev E A and Dyubko S F 2005 A Rigorous Attempt to Verify Interstellar Glycine Astrophys. J. 619 914

    Article  CAS  Google Scholar 

  17. Hollis J M, Pedelty J A, Snyder L F, Jewell P R, Lovas F J, Palmer P and Liu S-Y 2003 A Sensitive Very Large Array Search for Small-Scale Glycine Emission toward OMC-1 Astrophys. J. 588 353

    Article  CAS  Google Scholar 

  18. Miller S L 1953 A Production of Amino Acids Under Possible Primitive Earth Conditions Science 117 528

    Article  CAS  Google Scholar 

  19. Dickens J E, Irvine W M, DeVries C H and Ohishi M 1997 Hydrogenation of Interstellar Molecules: A Survey for Methylenimine \(\text{ CH }_{2} \text{ NH }\) Astrophys. J. 479 307

    Article  CAS  Google Scholar 

  20. Salter C J, Ghosh T, Catinella B, Lebron M, Lerner M S, Minchin R and Momjian E 2008 The arecibo ARP 220 spectral census. I. Discovery of the pre-biotic molecule methanimine and new cm-wavelength transitions of other molecules Astron. J. 136 389

    Article  CAS  Google Scholar 

  21. Koch D M, Toubin C, Peslherbe G H and Hynes J T 2008 A Theoretical Study of the Formation of the Aminoacetonitrile Precursor of Glycine on Icy Grain Mantles in the Interstellar Medium J. Phys. Chem. C 112 2972

    Article  CAS  Google Scholar 

  22. Wang L P, Titov A, McGibbon R, Liu F, Pande V S and Martinez T J 2014 Discovering chemistry with an ab initio nanoreactor Nat. Chem. 6 1044

    Article  CAS  Google Scholar 

  23. Rimola A, Sodupe M and Ugliengo P 2010 Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach Phys. Chem. Chem. Phys. 12 5285

    Article  CAS  Google Scholar 

  24. Nhlabatsi Z P, Bhasi P and Sitha S 2016 Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of \(\text{ CH }_{2}\)[double bond, length as m-dash]\(\text{ NH }\), \(\text{ CO }_{2}\) and \(\text{ H }_{2}\) Phys. Chem. Chem. Phys. 18 20109

    Article  CAS  Google Scholar 

  25. Holtom P D, Bennett C J, Osamura Y, Mason N J and Kaiser R I 2005 A Combined Experimental and Theoretical Study on the Formation of the Amino Acid Glycine \(\text{ NH }_{2} \text{ CH }_{2} \text{ COOH }\) and its Isomer \(\text{ CH }_{3} \text{ NHCOOH }\) in Extraterrestrial Ices Astrophys. J. 626 940

    Article  CAS  Google Scholar 

  26. Lee C -W, Kim J -k, Moon E -S, Minh Y C and Kang H 2009 Formation of Glycine on Ultraviolet-Irradiated Interstellar Ice-Analog Films and Implications for Interstellar Amino Acids Astrophys. J. 697 428

    Article  CAS  Google Scholar 

  27. Suzuki T, Ohishi M, Hirota T, Saito M, Majumdar L and Wakelam V 2016 survey observations of a possible glycine precursor, methanimine \(\text{ CH }_{2}\text{ NH }\) Astrophys. J. 825 79

    Article  Google Scholar 

  28. Nhlabatsi Z P, Bhasi P and Sita S 2016 Possible interstellar formation of glycine from the reaction of \(\text{ CH }_{2} = \text{ NH }\), \(\text{ CO }\) and \(\text{ H }_{2} \text{ O }\): catalysis by extra water molecules through the hydrogen relay transport Phys. Chem. Chem. Phys. 18 375

    Article  CAS  Google Scholar 

  29. Rimola A, Sodupe M and Ugliengo P 2012 Computational Study of Interstellar Glycine Formation Occurring at Radical Surfaces of Water-Ice Dust Particles Astrophys. J. 754 24

    Article  Google Scholar 

  30. Gauld J W, Audier H, Fossey J and Radom L 1996 Water-Catalyzed Interconversion of Conventional and Distonic Radical Cations: Methanol and Methyleneoxonium Radical Cations J. Am. Chem. Soc. 118 6299

    Article  CAS  Google Scholar 

  31. Wang X, Sun W and Holmes J L 2006 Water-Assisted Interconversions and Dissociations of the Acetaldehyde Ion and Its Isomers. An Experimental and Theoretical Study J. Phys. Chem. A 110 8409

    Article  CAS  Google Scholar 

  32. Bromley S T, Goumans T P M, Herbst E, Jones A P and Slater B 2014 Challenges in modelling the reaction chemistry of interstellar dust Phys. Chem. Chem. Phys. 16 18623

    Article  CAS  Google Scholar 

  33. Botschwina P 2003 Spectroscopic properties of interstellar molecules Theory and experiment Phys. Chem. Chem. Phys. 5 3337

    Article  CAS  Google Scholar 

  34. Paranjothy M, Sun R, Zhuang Y and Hase W L 2013 Direct chemical dynamics simulations: coupling of classical and quasiclassical trajectories with electronic structure theory WIREs Comput. Mol. Sci. 3 296

    Article  CAS  Google Scholar 

  35. Sun L and Hase W L 2003 Born-Oppenheimer Direct Dynamics Classical Trajectory Simulations, In Reviews in Computational Chemistry, K B Lipkowitz, R Larter and T R Cundari (Eds.) (Hoboken, NJ, USA: John Wiley & Sons, Inc.) Vol. 19

  36. Peslherbe G H, Wang H and Hase W L 1999 Monte Carlo Sampling for Classical Trajectory Simulations, In Advances in Chemical Physics: Monte Carlo Methods in Chemical Physics I Prigogine and S A Rice (Eds.) (Hoboken, NJ, USA: John Wiley & Sons, Inc.) Vol. 105

    Chapter  Google Scholar 

  37. Schlier C and Seiter A 1998 Symplectic Integration of Classical Trajectories: A Case Study J. Phys. Chem. A 102 9399

    Article  CAS  Google Scholar 

  38. Schlier C and Seiter A 2000 High-order symplectic integration: an assessment Comput. Phys. Commun. 130 176

    Article  CAS  Google Scholar 

  39. Hu X, Hase W L and Pirraglia T 1991 Vectorization of the general Monte Carlo classical trajectory program VENUS J. Comput. Chem. 12 1014

    Article  CAS  Google Scholar 

  40. Hase W L, Duchovic R J, Hu X, Komornicki A, Lim K F, Hong Lu D, Peslherbe G H, Swamy K N, De Linde S R V, Varandas A J C, Wang H and Wolf R J 1996 Quant. Chem. Prog. Exch. Bull. 16 43

    Google Scholar 

  41. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, Dam H V, Wang D, Nieplocha J, Apra E, Windus T and De Jong W 2010 NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations Comput. Phys. Commun. 181 1447

    Article  Google Scholar 

  42. Steinfeld J I, Francisco J S and Hase W L 1998 In Chemical Kinetics and Dynamics \(2^{\rm nd}\) edn. (US: Prentice Hall)

  43. Bell R P 1980 In The Tunnel Effect in Chemistry \(1^{\rm st}\) edn. (US: Springer)

  44. Benoit M, Marx D and Parrinello M 1998 Tunnelling and zero-point motion in high-pressure ice Nature 392 258

    Article  CAS  Google Scholar 

  45. Meng X, Guo J, Peng J, Chen J, Wang Z, Shi J -R, Li X -Z, Wang E -G and Jiang Y 2015 Direct visualization of concerted proton tunneling in a water nanocluster Nat. Phys. 11 235

    Article  CAS  Google Scholar 

  46. Drechsel-Grau C and Marx D 2015 Tunnelling in chiral water clusters: Protons in concert Nat. Phys. 11 216

    Article  CAS  Google Scholar 

  47. Si-Chuan X, Li-Ying M, Fu-Yong B, Qiang S, Mao-Fa G and Xing-Kang Z 2009 \(\text{ H }_{2} \text{ O }\) coupled proton transfer mechanism and hydrogen tunneling effects in the reaction of \(\text{ H }_{2} \text{ NCH }_{2} \text{ CN }\) with \(\text{ H }_{2} \text{ O }\) in the interstellar medium Acta Phys. -Chim. Sin. 25 2312

    Google Scholar 

Download references

Acknowledgements

Funding from Department of Science and Technology, India, through grant number SB/FT/CS-053/2013 is acknowledged. Part of the simulations were carried out in C-DAC (NPSF) Computational facility, Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikandan Paranjothy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, Y., Vincent, A. & Paranjothy, M. Classical dynamics simulations of interstellar glycine formation via \(\hbox {CH}_{2} = \hbox {NH} + \hbox {CO} + \hbox {H}_{2}\hbox {O}\) reaction. J Chem Sci 129, 1571–1577 (2017). https://doi.org/10.1007/s12039-017-1367-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1367-2

Keywords

Navigation