Skip to main content

Advertisement

Log in

Hydrogenation and hydration of carbon dioxide: a detailed characterization of the reaction mechanisms based on the reaction force and reaction electronic flux analyses

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A computational DFT study of the reaction mechanism of hydrogenation and hydration of carbon dioxide is presented. It has been found that hydrogenation and hydration are endoenergetic reactions that are carried out in two steps, passing by a stable intermediate that is surrounded by energy barriers of 70 kcal/mol and 10 kcal/mol for hydrogenation and 50 kcal/mol and 10 kcal/mol for hydration. Using the reaction force analysis, we were able to characterize the physical nature of the activation barriers and found that activation energies are mostly due to structural rearrangements. An interesting difference in the reaction mechanisms disclosed by the reaction force and electronic flux analyses is that while in the hydrogenation reaction the mechanisms is conditioned by the H2 cleavage with a high energy barrier, in the hydration reaction the formation of a transient four member ring structure favoring an attractive local hydrogen bond interaction pushes the reaction toward the product with a considerably lower energy barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Meteorological Organization WMO Greenhouse Gas Bulletin (GHG). Accessed: 2015-11-22

  2. Aaron D, Tsouris C (2005) Sep Sci Technol 40(1–3):321

    Article  CAS  Google Scholar 

  3. Yang HQ, Xu ZH, Fan MH, Gupta R, Slimane RB, Bland AE, Wright I (2008) J Environ Sci (China) 20(1):14

    Article  CAS  Google Scholar 

  4. Férey G (2008) Chem Soc Rev 37:191

    Article  Google Scholar 

  5. Maihom T, Wannakao S, Boekfa B, Limtrakul J (2013) J Phys Chem C 117:17650

    Article  CAS  Google Scholar 

  6. Federsel C, Jackstell R, Beller M (2010) Angew Chem Int Ed 49:6254

    Article  CAS  Google Scholar 

  7. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703

    Article  CAS  Google Scholar 

  8. Toro-Labbé A (1999) J Phys Chem A 103:4398

    Article  Google Scholar 

  9. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) J Chem Phys A 109:1748

    Article  Google Scholar 

  10. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Herrera B, Jaque P, Concha M, Murray J (2005) J Chem Sci 117:467

    Article  CAS  Google Scholar 

  11. Rincón E, Jaque P, Toro-Labbé A (2006) J Chem Phys A 110:9478

    Article  Google Scholar 

  12. Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Chem Phys A 112:11487

    Article  CAS  Google Scholar 

  13. Herrera B, Toro-Labbé A (2007) J Chem Phys A 111:5921

    Article  CAS  Google Scholar 

  14. Echegaray E, Toro-Labbé A (2008) J Chem Phys A 112:11801

    Article  CAS  Google Scholar 

  15. Guzmán-Angel D, Inostroza-Rivera R, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2016) Theor Chem Acc 135:37

    Article  Google Scholar 

  16. Duarte F, Toro-Labbé A (2011) J Chem Phys A 115:3050

    Article  CAS  Google Scholar 

  17. Cerón ML, Echegaray E, Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2011) Sci China Chem 54:1982

    Article  Google Scholar 

  18. Vogt-Geisse S, Toro-Labbé A (2009) J Chem Phys 130:244308

    Article  Google Scholar 

  19. Pearson RG (1990) Coord Chem Rev 220:403

    Article  Google Scholar 

  20. Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88:889

    Article  Google Scholar 

  21. Foster J, Weinhold F (1980) J Chem Am Soc 102:7211

    Article  CAS  Google Scholar 

  22. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A (2018) J Mol Model 24:4

    Article  Google Scholar 

  23. Villegas-Escobar N, Larsen MH, Gutiérrez-Oliva S, Hashmi ASK, Toro-Labbé A (2017) Chem Eur J 119:26598

    Google Scholar 

  24. Ortega D, Gutiérrez-Oliva S, Tantillo DJ, Toro-Labbé A (2015) Phys Chem Chem Phys 17:9771–9779

    Article  CAS  Google Scholar 

  25. Ortega DE, Nguyen QNN, Tantillo DJ, Toro-Labbé A (2016) J Comp Chem 37:1068–1081

    Article  CAS  Google Scholar 

  26. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  27. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  28. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Rev Phys Lett 49:1691

    Article  CAS  Google Scholar 

  29. Perdew JP, Levy M (1983) Phys Rev Lett 51:1884

    Article  CAS  Google Scholar 

  30. Koopmans TA (1933) Physica 1:104

    Article  CAS  Google Scholar 

  31. Janak JF (1978) Phys Rev B 18:7165

    Article  CAS  Google Scholar 

  32. Levy M, Perdew JP, Sahni V (1984) Rev Phys A 30:2745

    Article  Google Scholar 

  33. Cohen AJ, Mori-Sánchez P, Yang W (2011) Chem Rev 112:289

    Article  Google Scholar 

  34. Cohen AJ, Mori-Sánchez P, Yang W (2008) Rev Phys B 77:115123

    Article  Google Scholar 

  35. Zevallos J, Toro-Labbé A (2003) J Chem Chil Soc 48:39

    Article  CAS  Google Scholar 

  36. Villegas-Escobar N, Gutiérrez-Oliva S, Toro-Labbé A (2015) J Chem Phys C 119:26598

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  38. Zhao Y, Truhlar DG (2007) Acc Chem Res 41:157

    Article  Google Scholar 

  39. Zhao Y, Truhlar DG (2008) J Chem Phys C 112:6860

    Article  CAS  Google Scholar 

  40. Becke A (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  43. Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  44. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc Wallingford CT

  46. Biswas S, Chowdhury A, Roy P, Pramanik A, Sarkar P (2018) Mol J Model 24:224

    Article  Google Scholar 

  47. Rawat KS, Mahata A, Choudhuri I, Pathak B (2016) Chem J Phys C 30:16478

    Article  Google Scholar 

  48. Rawat KS, Mahata A, Pathak B (2016) Chem J Phys C 120:26652

    Article  CAS  Google Scholar 

  49. Biswas S, Pramanik A, Sarkar P (2018) Chem Select 3:5185

    CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to our dear friend Professor Pratim K. Chattaraj, one of the most brilliant minds that we had the chance to meet along this travel through quantum chemistry. We are deeply thankful to him for showing us the many and often mysterious ways of conceptual DFT. This work was supported by FONDECYT through the project N°1181072. DGA thanks financial support from CONICYT-PCHA/Doctorado Nacional for a Ph.D. fellowship (N° 2016-21161202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Toro-Labbé.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Angel, D., Gutiérrez-Oliva, S. & Toro-Labbé, A. Hydrogenation and hydration of carbon dioxide: a detailed characterization of the reaction mechanisms based on the reaction force and reaction electronic flux analyses. J Mol Model 25, 16 (2019). https://doi.org/10.1007/s00894-018-3891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3891-5

Keywords

Navigation