Skip to main content
Log in

Computational studies on the hydride transfer barrier for the catalytic hydrogenation of CO2 by different Ni(II) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydride transfer is the most crucial step for the catalytic hydrogenation of CO2 in homogeneous condition. Here, we perform state-of-the-art calculations to show the effect of geometry and spin states of Ni-hydride complexes containing different types of multidentate phosphine ligands on their hydride transfer barrier. For doing this, we first choose Ni-bis(diphosphine) complexes of the type NiP4, which have been synthesized recently and then by extrapolating the idea we propose a new type of NiP2N2 complex showing much lower hydride transfer barrier. We also compute the hydricities of the Ni-hydride complexes in aqueous medium and try to correlate these thermodynamic quantities with the kinetic barrier of hydride transfer.

NiP2N2 complex can efficiently hydrogenage CO2 with a quite low hydride transfer barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burgess SA, Kendall AJ, Tyler DR, Linehan JC, Appel AM (2017) ACS Catal 7:3089–3096

    Article  CAS  Google Scholar 

  2. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    Article  CAS  PubMed  Google Scholar 

  3. Savéant J-M (2008) Chem Rev 108:2348–2378

    Article  CAS  PubMed  Google Scholar 

  4. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 38:89–99

    Article  CAS  PubMed  Google Scholar 

  5. Mellmann D, Sponholz P, Junge H, Beller M (2016) Chem Soc Rev 45:3954–3988

    Article  CAS  PubMed  Google Scholar 

  6. Rakowski Dubois M, Dubois DL (2009) Acc Chem Res 42:1974–1982

    Article  CAS  PubMed  Google Scholar 

  7. An L, Chen R (2016) J Power Sources 320:127–139

    Article  CAS  Google Scholar 

  8. Mao H, Huang T, Yu A (2016) Int J Hydrogen Energy 41:13190–13196

    Article  CAS  Google Scholar 

  9. Czaun M, Kothandaraman J, Goeppert A, Yang B, Greenberg S, May RB, Olah GA, Prakash GS (2016) ACS Catal 6:7475–7484

    Article  CAS  Google Scholar 

  10. Klinkova A, Luna PD, Dinh C-T, Voznyy O, Larin EM, Kumacheva E, Sargent EH (2016) ACS Catal 6:8115–8120

    Article  CAS  Google Scholar 

  11. Tanaka R, Yamashita M, Nozaki K (2009) J Am Chem Soc 131:14168–14169

    Article  CAS  PubMed  Google Scholar 

  12. Jessop PG, Joó F, Tai C-C (2004) Coord Chem Rev 248:2425–2442

    Article  CAS  Google Scholar 

  13. Ogo S, Kabe R, Hayashi H, Harada R, Fukuzumi S (2006) Dalton Trans, 4657–4663

  14. Jessop PG, Ikariya T, Noyori R (1995) Chem Rev 95:259–272

    Article  CAS  Google Scholar 

  15. Sanz S, Azua A, Peris E (2010) Dalton Trans 39:6339–6343

    Article  CAS  PubMed  Google Scholar 

  16. Inoue Y, Izumida H, Sasaki Y, Hashimoto H (1976) Chem Lettr 5:863–864

    Article  Google Scholar 

  17. Inoue Y, Sasaki Y, Hashimoto H (1975) J Chem Soc, Chem Commun, 718–719

  18. Evans G, Newell C (1978) Inorg Chimi Acta 31:L387–L389

    Article  CAS  Google Scholar 

  19. Tai C-C, Chang T, Roller B, Jessop PG (2003) Inorg Chem 42:7340–7341

    Article  CAS  PubMed  Google Scholar 

  20. Langer R, Diskin-Posner Y, Leitus G, Shimon LJ, Ben-David Y, Milstein D (2011) Angew Chem Int Ed 50:9948–9952

    Article  CAS  Google Scholar 

  21. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M (2012) J Am Chem Soc 134:20701–20704

    Article  CAS  PubMed  Google Scholar 

  22. Zhu F, Zhu-Ge L, Yang G, Zhou S (2015) ChemSusChem 8:609–612

    Article  CAS  PubMed  Google Scholar 

  23. Fong H, Peters JC (2014) Inorg Chem 54:5124–5135

    Article  CAS  PubMed  Google Scholar 

  24. Rivada-Wheelaghan O, Dauth A, Leitus G, Diskin-Posner Y, Milstein D (2015) Inorg Chem 54:4526–4538

    Article  CAS  PubMed  Google Scholar 

  25. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M (2010) Angew Chem Int Ed 49:9777–9780

    Article  CAS  Google Scholar 

  26. Loewen ND, Thompson EJ, Kagan M, Banales CL, Myers TW, Fettinger JC, Berben LA (2016) Chem Sci 7:2728–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M (2012) Chem A Europ J 18:72–75

    Article  CAS  Google Scholar 

  28. Jeletic MS, Helm ML, Hulley EB, Mock MT, Appel AM, Linehan JC (2014) ACS Catal 4:3755–3762

    Article  CAS  Google Scholar 

  29. Chakraborty S, Zhang J, Patel YJ, Krause JA, Guan H (2013) Inorg Chem 52:37–47

    Article  CAS  PubMed  Google Scholar 

  30. Enthaler S, Brück A, Kammer A, Junge H, Irran E, Gülak S (2015) ChemCatChem 7:65–69

    Article  CAS  Google Scholar 

  31. Watari R, Kayaki Y, Hirano S-I, Matsumoto N, Ikariya T (2015) Adv Synth Catal 357:1369–1373

    Article  CAS  Google Scholar 

  32. Zall CM, Linehan JC, Appel AM (2015) ACS Catal 5:5301–5305

    Article  CAS  Google Scholar 

  33. Biswas S, Pramanik A, Sarkar P (2018) ChemistrySelect 3:5185–5193

    Article  CAS  Google Scholar 

  34. Bertini F, Gorgas N, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L (2016) ACS Catal 6:2889–2893

    Article  CAS  Google Scholar 

  35. Lu S-M, Wang Z, Li J, Xiao J, Li C (2016) Green Chem 18:4553–4558

    Article  CAS  Google Scholar 

  36. Sordakis K, Tsurusaki A, Iguchi M, Kawanami H, Himeda Y, Laurenczy G (2016) Chem A Eur J 22:15605–15608

    Article  CAS  Google Scholar 

  37. Xu S, Onishi N, Tsurusaki A, Manaka Y, Wang W-H, Muckerman JT, Fujita E, Himeda Y (2015) Eur J Inorg Chem 2015:5591–5594

    Article  CAS  Google Scholar 

  38. Moret S, Dyson PJ, Laurenczy G (2014) Nat Commun 5:4017

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K (2011) Organometallics 30:6742–6750

    Article  CAS  Google Scholar 

  40. Laurenczy G, Joó F, Nádasdi L (2000) Inorg Chem 39:5083–5088

    Article  CAS  PubMed  Google Scholar 

  41. Onishi N, Xu S, Manaka Y, Suna Y, Wang W-H, Muckerman JT, Fujita E, Himeda Y (2015) Inorg Chem 54:5114–5123

    Article  CAS  PubMed  Google Scholar 

  42. Robinson SJC, Zall CM, Miller DL, Linehan JC, Appel AM (2016) Dalton Trans 45:10017–10023

    Article  Google Scholar 

  43. Connelly SJ, Wiedner ES, Appel AM (2015) Dalton Trans 44:5933–5938

    Article  CAS  PubMed  Google Scholar 

  44. Wiedner ES, Chambers MB, Pitman CL, Bullock RM, Miller AJ, Appel AM (2016) Chem Rev 116:8655–8692

    Article  CAS  PubMed  Google Scholar 

  45. DuBois DL, Berning DE (2000) Appl Organometal Chem 14:860–862

    Article  CAS  Google Scholar 

  46. Curtis CJ, Miedaner A, Ellis WW, DuBois DL (2002) J Am Chem Soc 124:1918–1925

    Article  CAS  PubMed  Google Scholar 

  47. Miller AJ, Labinger JA, Bercaw JE (2011) Organometallics 30:4308–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsay C, Livesay BN, Ruelas S, Yang JY (2015) J Am Chem Soc 137:14114–14121

    Article  CAS  PubMed  Google Scholar 

  49. Taheri A, Thompson EJ, Fettinger JC, Berben LA (2015) ACS Catal 5:7140–7151

    Article  CAS  Google Scholar 

  50. Pitman CL, Brereton KR, Miller AJ (2016) J Am Chem Soc 138:2252–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pitman C, Finster O, Miller A (2016) Chem Commun 52:9105–9108

    Article  CAS  Google Scholar 

  52. Matsubara Y, Fujita E, Doherty MD, Muckerman JT, Creutz C (2012) J Am Chem Soc 134:15743–15757

    Article  CAS  PubMed  Google Scholar 

  53. Creutz C, Chou MH (2009) J Am Chem Soc 131:2794–2795

    Article  CAS  PubMed  Google Scholar 

  54. Eberhardt NA, Guan H (2016) Chem Rev 116:8373–8426

    Article  CAS  PubMed  Google Scholar 

  55. Aresta M, Nobile CF, Albano VG, Forni E, Manassero M (1975) J Chem Soc Chem Commun, 636–637

  56. Breitenfeld J, Scopelliti R, Hu X (2012) Organometallics 31:2128–2136

    Article  CAS  Google Scholar 

  57. Ceballos BM, Tsay C, Yang JY (2017) Chem Commun 53:7405

    Article  CAS  Google Scholar 

  58. Cope JD, Liyanage NP, Kelley PJ, Denny JA, Valente EJ, Webster CE, Delcamp JH, Hollis TK (2017) Chem Commun 53:9442–9445

    Article  CAS  Google Scholar 

  59. Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T (2017) J Am Chem Soc 139:6538–6541

    Article  CAS  PubMed  Google Scholar 

  60. Maganas D, Grigoropoulos A, Staniland SS, Chatziefthimiou SD, Harrison A, Robertson N, Kyritsis P, Neese F (2010) Inorg Chem 49:5079–5093

    Article  CAS  PubMed  Google Scholar 

  61. Singh S, Sunoj RB (2017) J Org Chem 82:9619–9626

    Article  CAS  PubMed  Google Scholar 

  62. Frisch MJ, et al (2009) Gaussian 09 Revision C.01. Gaussian Inc Wallingford CT

  63. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  64. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  65. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  66. Rawat KS, Mahata A, Choudhuri I, Pathak B (2016) J Phys Chem C 120:16478–16488

    Article  CAS  Google Scholar 

  67. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  68. Rawat KS, Mahata A, Pathak B (2016) J Phys Chem C 120:26652–26662

    Article  CAS  Google Scholar 

  69. Riplinger C, Sampson MD, Ritzmann AM, Kubiak CP, Carter EA (2014) J Am Chem Soc 136:16285–16298

    Article  CAS  PubMed  Google Scholar 

  70. Keith JA, Grice KA, Kubiak CP, Carter EA (2013) J Am Chem Soc 135:15823–15829

    Article  CAS  PubMed  Google Scholar 

  71. Riplinger C, Carter EA (2015) ACS Catal 5:900–908

    Article  CAS  Google Scholar 

  72. Rawat KS, Mahata A, Choudhuri I, Pathak B (2016) J Phys Chem C 120:8821–8831

    Article  CAS  Google Scholar 

  73. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  CAS  PubMed  Google Scholar 

  74. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  75. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  76. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  PubMed  Google Scholar 

  77. Blanchard S, Neese F, Bothe E, Bill E, Weyhermüller T, Wieghardt K (2005) Inorg Chem 44:3636–3656

    Article  CAS  PubMed  Google Scholar 

  78. Mondal B, Neese F, Ye S (2016) Inorg chem 55:5438–5444

    Article  CAS  PubMed  Google Scholar 

  79. Yang X (2015) Chem Commun 51:13098–13101

    Article  CAS  Google Scholar 

  80. Chen X, Jing Y, Yang X (2016) Chem Eur J 22:8897–8902

    Article  CAS  PubMed  Google Scholar 

  81. Biswas S, Pramanik A, Sarkar P (2016) Nanoscale 8:10205–10218

    Article  CAS  PubMed  Google Scholar 

  82. Biswas S, Pramanik A, Sarkar P (2017) Struct Chem 28:1895–1906

    Article  CAS  Google Scholar 

  83. Qi X-J, Fu Y, Liu L, Guo Q-X (2007) Organometallics 26:4197–4203

    Article  CAS  Google Scholar 

  84. Muckerman JT, Achord P, Creutz C, Polyansky DE, Fujita E (2012) Proc Nat Ac Sci 109:15657–15662

    Article  Google Scholar 

  85. Ge H, Jing Y, Yang X (2016) Inorg Chem 55:12179–12184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Council of Scientific and Industrial Research, New Delhi, Govt. of India through sponsored research grant (CSIR, No. 01(2916)/17/EMR-II). S.B. and P.R. acknowledge CSIR for providing them Senior and Junior Research Fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranab Sarkar.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Chowdhury, A., Roy, P. et al. Computational studies on the hydride transfer barrier for the catalytic hydrogenation of CO2 by different Ni(II) complexes. J Mol Model 24, 224 (2018). https://doi.org/10.1007/s00894-018-3758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3758-9

Keywords

Navigation