Skip to main content
Log in

Effect of external static electric fields on the dynamic heterogeneity of ionic liquids

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) exhibit behavior analogous to supercooled liquids at room or even higher temperatures. ILs usually work under an externally applied static electric field (E). In this work, molecular dynamics simulations were performed with 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI+][BF4]) under E, with the aim of discovering the influence of E on the dynamic heterogeneity of ILs. ILs show more homogeneous dynamics with increasing E, as indicated by non-Gaussian parameters and dynamic susceptibility. The dynamic heterogeneity is greater in the E direction than that in the perpendicular directions under the same E. Despite the dynamic heterogeneity, only a small decoupling between diffusion and relaxation is observed under E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  PubMed  Google Scholar 

  2. Welton T (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem Rev 99:2071–2084

    Article  CAS  PubMed  Google Scholar 

  3. Rogers RD, Seddon KR (2003) Ionic Liquids--Solvents of the Future? Science 302:792–793

    Article  PubMed  Google Scholar 

  4. Seddon KR (1997) Ionic Liquids for Clean Technology. J Chem Technol Biotechnol 68:351–356

    Article  CAS  Google Scholar 

  5. Iuga C, Solís C, Alvarez-Idaboy JR, Martínez MÁ, Mondragón MA, Vivier-Bunge A (2014) A theoretical and experimental evaluation of imidazolium-based ionic liquids for atmospheric mercury capture. J Mol Model 20:2186

    Article  CAS  PubMed  Google Scholar 

  6. Tan Z, Li Q, Wang C, Zhou W, Yang Y, Wang H, Yi Y, Li F (2017) Ultrasonic Assisted Extraction of Paclitaxel from Taxus x media Using Ionic Liquids as Adjuvants: Optimization of the Process by Response Surface Methodology. Molecules 22:1483

    Article  CAS  Google Scholar 

  7. Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Voth GA (2005) Unique Spatial Heterogeneity in Ionic Liquids. J Am Chem Soc 127:12192–12193

    Article  CAS  PubMed  Google Scholar 

  9. Canongia Lopes JNA, Pádua AAH (2006) Nanostructural Organization in Ionic Liquids. J Phys Chem B 110:3330–3335

    Article  CAS  PubMed  Google Scholar 

  10. Ji Y, Shi R, Wang Y, Saielli G (2013) Effect of the Chain Length on the Structure of Ionic Liquids: from Spatial Heterogeneity to Ionic Liquid Crystals. J Phys Chem B 117:1104–1109

    Article  CAS  PubMed  Google Scholar 

  11. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans :2133–2140

  12. Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 8:2627–2636

    Article  CAS  Google Scholar 

  13. Hayamizu K, Tsuzuki S, Seki S, Umebayashi Y (2011) Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis (trifluoromethanesulfonyl) amide and bis (fluorosulfonyl) amide anions and their binary systems including lithium salts. J Chem Phys 135:084505

  14. Alam TM, Dreyer DR, Bielawski CW, Ruoff RS (2013) Combined Measurement of Translational and Rotational Diffusion in Quaternary Acyclic Ammonium and Cyclic Pyrrolidinium Ionic Liquids. J Phys Chem B 117:1967–1977

    Article  CAS  PubMed  Google Scholar 

  15. Cang H, Li J, Fayer MD (2003) Orientational dynamics of the ionic organic liquid 1-ethyl-3- methylimidazolium nitrate. J Chem Phys 119:13017–13023

    Article  CAS  Google Scholar 

  16. Lang B, Angulo G, Vauthey E (2006) Ultrafast Solvation Dynamics of Coumarin 153 in Imidazolium- Based Ionic Liquids. J Phys Chem A 110:7028–7034

    Article  CAS  PubMed  Google Scholar 

  17. Castner EW, Wishart JF, Shirota H (2007) Intermolecular Dynamics, Interactions, and Solvation in Ionic Liquids. Acc Chem Res 40:1217–1227

    Article  CAS  PubMed  Google Scholar 

  18. Funston AM, Fadeeva TA, Wishart JF, Castner EW (2007) Fluorescence Probing of Temperature- Dependent Dynamics and Friction in Ionic Liquid Local Environments. J Phys Chem B 111:4963–4977

    Article  CAS  PubMed  Google Scholar 

  19. Del Pópolo MG, Voth GA (2004) On the Structure and Dynamics of Ionic Liquids. J Phys Chem B 108:1744–1752

    Article  CAS  Google Scholar 

  20. Jeong D, Choi MY, Kim HJ, Jung Y (2010) Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid. Phys Chem Chem Phys 12:2001–2010

    Article  CAS  PubMed  Google Scholar 

  21. Liu H, Maginn E (2011) A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl)imide. J Chem Phys 135

  22. Park S-W, Kim S, Jung Y (2015) Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution. Phys Chem Chem Phys 17:29281–29292

    Article  CAS  PubMed  Google Scholar 

  23. Kim S, Park S-W, Jung Y (2016) Heterogeneous dynamics and its length scale in simple ionic liquid models: a computational study. Phys Chem Chem Phys 18:6486–6497

    Article  CAS  PubMed  Google Scholar 

  24. Berthier L (2011) Dynamic Heterogeneity in Amorphous Materials. Physics 4

  25. Arzhantsev S, Jin H, Baker GA, Maroncelli M (2007) Measurements of the Complete Solvation Response in Ionic Liquids. J Phys Chem B 111:4978–4989

    Article  CAS  PubMed  Google Scholar 

  26. Samanta A (2006) Dynamic Stokes Shift and Excitation Wavelength Dependent Fluorescence of Dipolar Molecules in Room Temperature Ionic Liquids. J Phys Chem B 110:13704–13716

    Article  CAS  PubMed  Google Scholar 

  27. Shim Y, Jeong D, Manjari S, Choi MY, Kim HJ (2007) Solvation, Solute Rotation and Vibration Relaxation, and Electron-Transfer Reactions in Room-Temperature Ionic Liquids. Acc Chem Res 40:1130–1137

    Article  CAS  PubMed  Google Scholar 

  28. Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC (1997) Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid. Phys Rev Lett 79:2827–2830

    Article  CAS  Google Scholar 

  29. Donati C, Douglas JF, Kob W, Plimpton SJ, Poole PH, Glotzer SC (1998) Stringlike Cooperative Motion in a Supercooled Liquid. Phys Rev Lett 80:2338–2341

    Article  CAS  Google Scholar 

  30. Köddermann T, Ludwig R, Paschek D (2008) On the Validity of Stokes–Einstein and Stokes–Einstein– Debye Relations in Ionic Liquids and Ionic-Liquid Mixtures. ChemPhysChem 9:1851–1858

    Article  CAS  PubMed  Google Scholar 

  31. Karmakar S, Dasgupta C, Sastry S (2009) Growing length and time scales in glass-forming liquids. Proc Natl Acad Sci U S A 106:3675–3679

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ramírez-González PE, Sanchéz-Díaz LE, Medina-Noyola M, Wang Y (2016) Communication: Probing the existence of partially arrested states in ionic liquids. J Chem Phys 145:191101

    Article  CAS  PubMed  Google Scholar 

  33. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  CAS  Google Scholar 

  34. de Souza RF, Padilha JC, Gonçalves RS, Dupont J (2003) Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun 5:728–731

    Article  CAS  Google Scholar 

  35. Guo M, Fang J, Xu H, Li W, Lu X, Lan C, Li K (2010) Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J Membr Sci 362:97–104

    Article  CAS  Google Scholar 

  36. Yanes EG, Gratz SR, Baldwin MJ, Robison SE, Stalcup AM (2001) Capillary Electrophoretic Application of 1-Alkyl-3-methylimidazolium-Based Ionic Liquids. Anal Chem 73:3838–3844

    Article  CAS  PubMed  Google Scholar 

  37. Vaher M, Koel M, Kaljurand M (2002) Application of 1-alkyl-3-methylimidazolium-based ionic liquids in non-aqueous capillary electrophoresis. J Chromatogr A 979:27–32

    Article  CAS  PubMed  Google Scholar 

  38. Hayamizu K, Aihara Y (2010) Correlating the Ionic Drift under Pt/Pt Electrodes for Ionic Liquids Measured by Low-Voltage Electrophoretic NMR with Chronoamperometry. J Phys Chem Lett 1:2055–2058

    Article  CAS  Google Scholar 

  39. Umecky T, Saito Y, Matsumoto H (2009) Direct Measurements of Ionic Mobility of Ionic Liquids Using the Electric Field Applying Pulsed Gradient Spin−Echo NMR. J Phys Chem B 113:8466–8468

    Article  CAS  PubMed  Google Scholar 

  40. Shi R, Wang Y (2013) Ion-Cage Interpretation for the Structural and Dynamic Changes of Ionic Liquids under an External Electric Field. J Phys Chem B 117:5102–5112

    Article  CAS  PubMed  Google Scholar 

  41. Daily JW, Micci MM (2009) Ionic velocities in an ionic liquid under high electric fields using all-atom and coarse-grained force field molecular dynamics. J Chem Phys 131:094501

  42. Wang Y (2009) Disordering and Reordering of Ionic Liquids under an External Electric Field. J Phys Chem B 113:11058–11060

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S, Shi R, Ma X, Lu L, He Y, Zhang X, Wang Y, Deng Y (2012) Intrinsic Electric Fields in Ionic Liquids Determined by Vibrational Stark Effect Spectroscopy and Molecular Dynamics Simulation. Chem Eur J 18:11904–11908

    Article  CAS  PubMed  Google Scholar 

  44. Ramírez-González PE, Ren G, Saielli G, Wang Y (2016) Effect of Ion Rigidity on Physical Properties of Ionic Liquids Studied by Molecular Dynamics Simulation. J Phys Chem B 120:5678–5690

    Article  CAS  PubMed  Google Scholar 

  45. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  46. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  47. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  48. Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  49. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N· log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  50. Dzubiella J, Hoffmann GP, Löwen H (2002) Lane formation in colloidal mixtures driven by an external field. Phys Rev E 65:021402

  51. Giovambattista N, Mazza MG, Buldyrev SV, Starr FW, Stanley HE (2004) Dynamic Heterogeneities in Supercooled Water. J Phys Chem B 108:6655–6662

    Article  CAS  Google Scholar 

  52. Lačević N, Starr FW, Schrøder T, Glotzer S (2003) Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J Chem Phys 119:7372–7387

    Article  CAS  Google Scholar 

  53. Donati C, Franz S, Glotzer SC, Parisi G (2002) Theory of non-linear susceptibility and correlation length in glasses and liquids. J Non-Cryst Solids 307:215–224

    Article  Google Scholar 

  54. Xu L, Mallamace F, Yan Z, Starr FW, Buldyrev SV, Eugene Stanley H (2009) Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat Phys 5:565–569

    Article  CAS  Google Scholar 

  55. Shi Z, Debenedetti PG, Stillinger FH (2013) Relaxation processes in liquids: Variations on a theme by Stokes and Einstein. J Chem Phys 138:12A526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 2153200) and China Postdoctoral Science Funding (Nos. 2016 M602712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Sang.

Electronic supplementary material

ESM 1

(DOCX 758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, G., Ren, G. Effect of external static electric fields on the dynamic heterogeneity of ionic liquids. J Mol Model 24, 240 (2018). https://doi.org/10.1007/s00894-018-3773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3773-x

Keywords

Navigation