Skip to main content
Log in

A theoretical and experimental evaluation of imidazolium-based ionic liquids for atmospheric mercury capture

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, the capacity of three different imidazolium-based ionic liquids (ILs) for atmospheric mercury capture has been evaluated. Theoretical calculations using monomer and dimer models of ILs showed that [BMIM]+[SCN] and [BMIM]+[Cl] ionic liquids capture gaseous Hg0, while [BMIM]+[PF6] shows no ability for this purpose. These findings are supported by experimental data obtained using particle induced X-ray emission (PIXE) trace element analysis. Experimental and theoretical infrared data of the ILs were obtained before and after exposure to Hg. In all cases, no displacement of the bands was observed, indicating that the interaction does not significantly affect the force constants of substrate bonds. This suggests that van der Waals forces are the main forces responsible for mercury capture. Since the anion-absorbate is the driving force of the interaction, the largest charge-volume ratio of [Cl] could explain the higher affinity for mercury sequestration of the [BMIM]+[Cl] salt.

Mercury capture by [BMIM]+[PF6], [BMIM]+[SCN]and [BMIM]+[Cl]double pair ionic liquids

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang H, Xu Z, Fan M, Bland AE, Judkins RR (2007) J Hazard Mater 146:1

    Article  CAS  Google Scholar 

  2. Lindberg SE, Stratton WJ (1998) Environ Sci Technol 32:49

    Article  CAS  Google Scholar 

  3. Schroeder WH, Yarwood G, Niki H (1991) Water Air Soil Pollut 56:653

    Article  CAS  Google Scholar 

  4. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Chem Commun 1:135–136

    Article  Google Scholar 

  5. Wei G, Yang Z, Chen C (2003) Anal Chim Acta 488:183

    Article  CAS  Google Scholar 

  6. Ji L, Thiel SW, Pinto NG (2008) Ind Eng Chem Res 47:8396

    Article  CAS  Google Scholar 

  7. Pena-Pereira F, Lavilla I, Bendicho C, Vidal L, Canals A (2009) Talanta 78:537

    Article  CAS  Google Scholar 

  8. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Environ Sci Technol 36:2523

    Article  Google Scholar 

  9. Germani R, Mancini MV, Savelli G, Spreti N (2007) Tetrahedron Lett 48:1767

    Article  CAS  Google Scholar 

  10. Ouadi A, Gadenne B, Hesemann P, Moreau JJE, Billard I, Gaillard C, Mekki S, Moutiers G (2006) Chem Eur J 12:3074

    Article  CAS  Google Scholar 

  11. Dietz ML (2006) Sep Sci Technol 41:2047

    Article  CAS  Google Scholar 

  12. Papaiconomou N, Lee JM, Salminen J, von Stosch M, Prausnitz JM (2008) Ind Eng Chem Res 47:5080

    Article  CAS  Google Scholar 

  13. Kogelnig D, Stojanovic A, Galanski M, Groessl M, Jirsa F, Krachler R, Keppler BK (2008) Tetrahedron Lett 49:2782

    Article  CAS  Google Scholar 

  14. Chapeaux A, Stadherr MA, Brennecke JF (2007) J Chem Eng Data 52:2462

    Article  CAS  Google Scholar 

  15. Giridhar P, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2007) Electrochim Acta 52:3006

    Article  CAS  Google Scholar 

  16. Jayakumar M, Venkatesan KA, Srinivasan TG (2007) Electrochim Acta 52:7121

    Article  CAS  Google Scholar 

  17. Earle MJ, McCormac PB, Seddon KR (1998) Chem Commun :2245.

  18. Morrow TI, Maginn EJ (2002) J Phys Chem B 106:12807

    Article  CAS  Google Scholar 

  19. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) J Phys Chem B 108:16593

    Article  CAS  Google Scholar 

  20. Turner EA, Pye CC, Singer RD (2003) J Phys Chem A 107:2277

    Article  CAS  Google Scholar 

  21. Hunt PA (2007) J Phys Chem B 111:4844

    Article  CAS  Google Scholar 

  22. Katsyuba SA, Zvereva EE, Vidis A, Dyson PJ (2007) J Phys Chem A 111:352

    Article  CAS  Google Scholar 

  23. Tsuzuki S, Tokuda H, Hayamizu K, Watanabe M (2005) J Phys Chem B 109:16474

    Article  CAS  Google Scholar 

  24. Urahata S, Ribeiro MJ (2004) Chem Phys 110:2269

    Google Scholar 

  25. Liu Z, Huang S, Wang W (2004) J Phys Chem B 108:12978

    Article  CAS  Google Scholar 

  26. Del Popolo MG, Lynden-Bell RM, Kohanoff J (2005) J Phys Chem B 109:5859

    Google Scholar 

  27. Buhl M, Chaumont A, Schurhammer R, Wipff G (2005) J Phys Chem B 109:18591

    Article  Google Scholar 

  28. Wang Y, Li H, Han S (2005) J Chem Phys 123:174501

    Article  Google Scholar 

  29. Skarmoutsos I, Dellis D, Matthews RP, Welton T, Hunt PA (2012) J Phys Chem B 116:4921

    Article  CAS  Google Scholar 

  30. Ji LS, Thiel, Neville W, Pinto G (2008) 8:349

  31. Martínez-Carrillo MA, Solis C, Andrade E, Mondragón MA, Isaac-Olivé K, Rocha MF (2011) Nucl Inst Methods B 269:3032

    Article  Google Scholar 

  32. Martínez-Carrillo MA, Solís C, Isaac-Olivé K, Andrade E, Beltrán-Hernández RI (2010) Microchem J 94:48

    Article  Google Scholar 

  33. Endo T, Masu H, Fujii K, Morita T, Seki H, Sen S, Nishikawa K (2013) Cryst Growth Des 13:5383

    Article  CAS  Google Scholar 

  34. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT.

  35. Andrae D, Hausserman U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    Article  CAS  Google Scholar 

  38. Okuno Y (1997) Chem Eur J 3:212

    Article  CAS  Google Scholar 

  39. Benson SW (1982) The foundations of chemical kinetics. Krieger, Malabar, FL

    Google Scholar 

  40. Ardura D, Lopez R, Sordo TL (2005) J Phys Chem B 109:23618

    Article  CAS  Google Scholar 

  41. Alvarez-Idaboy JR, Reyes L, Cruz J (2006) J Org Lett 8:1763

  42. Alvarez-Idaboy JR, Reyes L, Mora-Diez N (2007) Org Biomol Chem 5:3682

  43. Galano A (2007) J Phys Chem A 111:1677

  44. Galano A (2008) J Phys Chem C 112:8922

  45. Galano A, Cruz-Torres A (2008) Org Biomol Chem 6:732

  46. Galano A, Francisco-Márquez M (2008) Chem Phys 345:87

  47. Mora-Diez N, Keller S, Alvarez-Idaboy JR (2009) Org Biomol Chem 7:3682

  48. Hirshfeld FL (1977) Theoret Chim Acta (Berl) 44:129

  49. Bultinck P, Van Alsenoy C, Ayers P, Carbó-Dorca R (2007) J ChemPhys126:144111

  50. Gao T, Andino JM, Alvarez-Idaboy JR (2010) Phys Chem Chem Phys 12:9830

    Article  CAS  Google Scholar 

  51. Stone A (1993) J Chem Phys Lett 211:101

    Article  CAS  Google Scholar 

  52. Tsuzuki S, Tokuda H, Mikami M (2007) Phys Chem Chem Phys 9:4780

    Article  CAS  Google Scholar 

  53. Curtiess LA, Frurip DJ, Blander M (1979) J Chem Phys 71:2703

    Article  Google Scholar 

  54. Martínez-Carrillo MA, Solís C, Andrade E, Mondragón MA, Murillo G, Méndez B (2012) Rev Mex Fis 58:258–261

    Google Scholar 

Download references

Acknowledgments

This work is a result of the FONCICYT (Fondo de Cooperación Internacional en Ciencia y Tecnología) Mexico-EU ‘RMAYS’ network, Project Nº 94666. Partial support was also received by DGAPA UNAM (Dirección General Asuntos del Personal Académico Universidad Nacional Autónoma de México) under grants IN112609 and IN219609. We gratefully acknowledge the Laboratorio de Supercómputo y Visualización en Paralelo at Universidad Autónoma Metropolitana-Iztapalapa and the Dirección General de Cómputo y de Tecnologías de Información y Comunicación (DGTIC) at Universidad Nacional Autónoma de México for computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Iuga.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iuga, C., Solís, C., Alvarez-Idaboy, J.R. et al. A theoretical and experimental evaluation of imidazolium-based ionic liquids for atmospheric mercury capture. J Mol Model 20, 2186 (2014). https://doi.org/10.1007/s00894-014-2186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2186-8

Keywords

Navigation