Skip to main content
Log in

The diffusion, structural relaxation, and fragility of [VIO2+][Tf2N]2 ionic liquid

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Viologen-based ionic liquids can form various microscopic structures at different temperatures. In this work, the dynamics of dimethyl-viologen bis-(tetrafluoroborate) ([VIO2+][Tf2N]2) ionic liquid within 400–800 K has been exploited by molecular dynamics simulations. [VIO2+][Tf2N]2 exhibits a supercooled liquid analogous diffusion and structural relaxation even at temperature T = 400 K, and behaves more like simple liquids as temperature increases. The variation of the diffusion constant and structural relaxation time with temperature follows a super-Arrhenius law; both can be fitted by two Arrhenius laws with a crossover temperature or fitted by a VFT law. [VIO2+][Tf2N]2 behaves as a fragile glass former. The decoupling of diffusion and relaxation is observed in [VIO2+] but not in [Tf2N]. The variation of dynamics with temperature is attributed to the time differences of the persistence in ion cage and exchange out of ion cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rogers RD, Seddon KR (2003) Ionic liquids--solvents of the future? Science 302:792–793

    Article  PubMed  Google Scholar 

  2. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  3. Mohammad A, Inamuddin D (2012) Green solvents II: properties and applications of ionic liquids. Springer

  4. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  PubMed  Google Scholar 

  5. Yanes EG, Gratz SR, Baldwin MJ, Robison SE, Stalcup AM (2001) Capillary electrophoretic application of 1-Alkyl-3-methylimidazolium-based ionic liquids. Anal Chem 73:3838–3844

    Article  CAS  PubMed  Google Scholar 

  6. Hapiot P, Lagrost C (2008) Electrochemical reactivity in room-temperature ionic liquids. Chem Rev 108:2238–2264

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Voth GA (2006) Tail aggregation and domain diffusion in ionic liquids. J Phys Chem B 110:18601–18608

    Article  CAS  PubMed  Google Scholar 

  8. Ji Y, Shi R, Wang Y, Saielli G (2013) Effect of the chain length on the structure of ionic liquids: from spatial heterogeneity to ionic liquid crystals. J Phys Chem B 117:1104–1109

    Article  CAS  PubMed  Google Scholar 

  9. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    Article  CAS  Google Scholar 

  10. Habasaki J, Leon C, Ngai K (2017) Dynamics of glassy, crystalline and liquid ionic conductors. Top Appl Phys 132

  11. Habasaki J, Ngai KL (2008) Molecular dynamics study of the dynamics near the glass transition in ionic liquids. Anal Sci 24:1321–1327

    Article  CAS  PubMed  Google Scholar 

  12. Jeong D, Choi MY, Kim HJ, Jung Y (2010) Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid. Phys Chem Chem Phys 12:2001–2010

    Article  CAS  PubMed  Google Scholar 

  13. Hayamizu K, Tsuzuki S, Seki S, Umebayashi Y (2011) Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J Chem Phys 135:084505

    Article  CAS  PubMed  Google Scholar 

  14. Alam TM, Dreyer DR, Bielawski CW, Ruoff RS (2013) Combined measurement of translational and rotational diffusion in quaternary acyclic ammonium and cyclic pyrrolidinium ionic liquids. J Phys Chem B 117:1967–1977

    Article  CAS  PubMed  Google Scholar 

  15. Cang H, Li J, Fayer MD (2003) Orientational dynamics of the ionic organic liquid 1-ethyl-3-methylimidazolium nitrate. J Chem Phys 119:13017–13023

    Article  CAS  Google Scholar 

  16. Lang B, Angulo G, Vauthey E (2006) Ultrafast solvation dynamics of Coumarin 153 in Imidazolium-based ionic liquids. J Phys Chem A 110:7028–7034

    Article  CAS  PubMed  Google Scholar 

  17. Castner EW, Wishart JF, Shirota H (2007) Intermolecular dynamics, interactions, and solvation in ionic liquids. Acc Chem Res 40:1217–1227

    Article  CAS  PubMed  Google Scholar 

  18. Funston AM, Fadeeva TA, Wishart JF, Castner EW (2007) Fluorescence probing of temperature-dependent dynamics and friction in ionic liquid local environments. J Phys Chem B 111:4963–4977

    Article  CAS  PubMed  Google Scholar 

  19. Del Pópolo MG, Voth GA (2004) On the structure and dynamics of ionic liquids. J Phys Chem B 108:1744–1752

    Article  CAS  Google Scholar 

  20. Liu H, Maginn E (2011) A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J Chem Phys 135

  21. Park S-W, Kim S, Jung Y (2015) Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution. Phys Chem Chem Phys 17:29281–29292

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Park S-W, Jung Y (2016) Heterogeneous dynamics and its length scale in simple ionic liquid models: a computational study. Phys Chem Chem Phys 18:6486–6497

    Article  CAS  PubMed  Google Scholar 

  23. Berthier L (2011) Dynamic heterogeneity in amorphous materials. Physics 4

  24. Arzhantsev S, Jin H, Baker GA, Maroncelli M (2007) Measurements of the complete solvation response in ionic liquids. J Phys Chem B 111:4978–4989

    Article  CAS  PubMed  Google Scholar 

  25. Samanta A (2006) Dynamic stokes shift and excitation wavelength dependent fluorescence of dipolar molecules in room temperature ionic liquids. J Phys Chem B 110:13704–13716

    Article  CAS  PubMed  Google Scholar 

  26. Shim Y, Jeong D, Manjari S, Choi MY, Kim HJ (2007) Solvation, solute rotation and vibration relaxation, and electron-transfer reactions in room-temperature ionic liquids. Acc Chem Res 40:1130–1137

    Article  CAS  PubMed  Google Scholar 

  27. Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC (1997) Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys Rev Lett 79:2827–2830

    Article  CAS  Google Scholar 

  28. Donati C, Douglas JF, Kob W, Plimpton SJ, Poole PH, Glotzer SC (1998) Stringlike cooperative motion in a supercooled liquid. Phys Rev Lett 80:2338–2341

    Article  CAS  Google Scholar 

  29. Xu L, Mallamace F, Yan Z, Starr FW, Buldyrev SV, Eugene Stanley H (2009) Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat Phys 5:565–569

    Article  CAS  Google Scholar 

  30. Köddermann T, Ludwig R, Paschek D (2008) On the validity of Stokes–Einstein and Stokes–Einstein–Debye relations in ionic liquids and ionic-liquid mixtures. ChemPhysChem 9:1851–1858

    Article  CAS  PubMed  Google Scholar 

  31. Ramírez-González PE, Sanchéz-Díaz LE, Medina-Noyola M, Wang Y (2016) Communication: probing the existence of partially arrested states in ionic liquids. J Chem Phys 145:191101

    Article  CAS  PubMed  Google Scholar 

  32. Binnemans K (2005) Ionic liquid crystals. Chem Rev 105:4148–4204

    Article  CAS  PubMed  Google Scholar 

  33. Goossens K, Lava K, Bielawski CW, Binnemans K (2016) Ionic liquid crystals: versatile materials. Chem Rev 116:4643–4807

    Article  CAS  PubMed  Google Scholar 

  34. Yoshio M, Kagata T, Hoshino K, Mukai T, Ohno H, Kato T (2006) One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc 128:5570–5577

    Article  CAS  PubMed  Google Scholar 

  35. Safavi A, Tohidi M (2010) Design and characterization of liquid crystal−graphite composite electrodes. J Phys Chem C 114:6132–6140

    Article  CAS  Google Scholar 

  36. Feng C, Rajapaksha CPH, Cedillo JM, Piedrahita C, Cao J, Kaphle V, Lüssem B, Kyu T, Jákli A (2019) Electroresponsive ionic liquid crystal elastomers. Macromol Rapid Commun 40:1900299

    Article  CAS  Google Scholar 

  37. Wang Y (2009) Disordering and reordering of ionic liquids under an external electric field. J Phys Chem B 113:11058–11060

    Article  CAS  PubMed  Google Scholar 

  38. Alberto ME, De Simone BC, Cospito S, Imbardelli D, Veltri L, Chidichimo G, Russo N (2012) Experimental and theoretical characterization of a new synthesized extended viologen. Chem Phys Lett 552:141–145

    Article  CAS  Google Scholar 

  39. Jordão N, Cabrita L, Pina F, Branco LC (2014) Novel bipyridinium ionic liquids as liquid electrochromic devices. Chem Eur J 20:3982–3988

    Article  CAS  PubMed  Google Scholar 

  40. Causin V, Saielli G (2009) Effect of a structural modification of the bipyridinium core on the phase behaviour of viologen-based bistriflimide salts. J Mol Liq 145:41–47

    Article  CAS  Google Scholar 

  41. Casella G, Causin V, Rastrelli F, Saielli G (2014) Viologen-based ionic liquid crystals: induction of a smectic a phase by dimerisation. Phys Chem Chem Phys 16:5048–5051

    Article  CAS  PubMed  Google Scholar 

  42. Bhowmik PK, Han H, Cebe JJ, Burchett RA, Acharya B, Kumar S (2003) Ambient temperature thermotropic liquid crystalline viologen bis(triflimide) salts. Liq Cryst 30:1433–1440

    Article  CAS  Google Scholar 

  43. Ramírez-González PE, Ren G, Saielli G, Wang Y (2016) Effect of ion rigidity on physical properties of ionic liquids studied by molecular dynamics simulation. J Phys Chem B 120:5678–5690

    Article  CAS  PubMed  Google Scholar 

  44. Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  45. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  46. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  47. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  CAS  Google Scholar 

  48. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  49. Lee SH, Rasaiah JC (1994) Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25° C. J Chem Phys 101:6964–6974

    Article  Google Scholar 

  50. Shi R, Wang Y (2013) Ion-cage interpretation for the structural and dynamic changes of ionic liquids under an external electric field. J Phys Chem B 117:5102–5112

    Article  CAS  PubMed  Google Scholar 

  51. Binder K, Kob W (2011) Glassy materials and disordered solids: an introduction to their statistical mechanics. World Scientific

  52. Shi R, Russo J, Tanaka H (2018) Origin of the emergent fragile-to-strong transition in supercooled water. Proc Natl Acad Sci U S A 115:9444–9449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hedges LO, Maibaum L, Chandler D, Garrahan JP (2007) Decoupling of exchange and persistence times in atomistic models of glass formers. J Chem Phys 127:211101

    Article  CAS  PubMed  Google Scholar 

  54. Varela LM, García M, Mosquera VC (2003) Exact mean-field theory of ionic solutions: non-Debye screening. Phys Rep 382:1–111

    Article  CAS  Google Scholar 

  55. Shi Z, Debenedetti PG, Stillinger FH (2013) Relaxation processes in liquids: variations on a theme by Stokes and Einstein. J Chem Phys 138:12A526

    Article  CAS  PubMed  Google Scholar 

  56. Alder BJ, Wainwright TE (1967) Velocity autocorrelations for hard spheres. Phys Rev Lett 18:988–990

    Article  CAS  Google Scholar 

  57. Boon JP, Yip S (1991) Molecular hydrodynamics. Courier Corporation

  58. Gan Ren GS (2018) Fractional Stokes-Einstein relation in TIP5P water at high temperatures. Chin Phys B 27:66101–066101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Gan Ren thanks Yanting Wang (Institute of Theoretical Physics, Chinese Academy of Science) for suggestions.

Funding

This work was supported by the Science Foundation of Civil Aviation Flight University of China (Nos. J2019-059 and JG2019-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan Ren.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Luo, Y., Zhao, Z. et al. The diffusion, structural relaxation, and fragility of [VIO2+][Tf2N]2 ionic liquid. J Mol Model 26, 55 (2020). https://doi.org/10.1007/s00894-020-4317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4317-8

Keywords

Navigation