Skip to main content
Log in

Addition of tryptophan methyl-ester on [60]fullerene: theoretical investigation of the mechanisms of azomethine ylides and fulleropyrrolidine formation

  • Short comments
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we perform the synthesization of carbon nanoparticles for active principle vectorization, with the suggestion of a reaction mechanism of tryptophan methyl ester addition on [60]fullerene. Firstly, we studied the effect of tryptophan form on its addition reaction on [60]fullerene. So, in order to determine the preferred environment that makes this reaction the most favorable, we considered all tryptophan possible forms in our investigation: the molecular, the zwitterionic, and the dibasic forms. Secondly, we investigate the proposed reaction mechanism of tryptophan methyl ester addition on [60]fullerene using theoretical thermodynamic calculation. Our hypothesis suggests the formation of azomethine ylide molecule in a first step followed by its addition on [60]fullerene in the second step by the photo-addition reaction involving the oxygen in its singlet state. The stability of each reactive intermediate involved in this mechanism is verified thermodynamically. The 12 most stable conformations of azomethine ylide were observed through potential energy surface analysis. They were obtained by a relaxed scan of the four dihedral angles. The calculations were conducted on the optimized geometry of fulleropyrrolidine mono-adduct and the bulk values of its thermodynamic constants were also determined. Infrared spectra observed in 100–4000 cm−1 region confirmed our hypothesis suggesting the first step of azomethine ylide formation followed by the second step of azomethine ylide addition on [60]fullerene by ν(Caliphatic-C-N), ν(Caromatic-C-N) and δ(N-H) coupled with ν(C-N) absorption bond.

Optimized geometry of the Fulleropyrrolidine monoaduct molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brack A, Raulin F (1991) L’évolution chimique et les origines de la vie. Masson, Paris

    Google Scholar 

  2. Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47:3457–3479

    Article  CAS  PubMed  Google Scholar 

  3. Rosset R, Caude M, Jardy A (1991) Chromatographies en Phases liquide et Supercritique. Masson, Paris

    Google Scholar 

  4. Jing T, Li X-Y (2002) Ab initio study on electron excitation and electron transfer in tryptophan–tyrosine system. Chem Phys 284:543–554

    Article  Google Scholar 

  5. Galikova N, Kelminskas M, Gruodis A, Balevichius LM (2011) Tyrosine-tryptophan complex: intermolecular electron transfer using quantum chemistry approach. Comput Model New Technol 15:19–23

    CAS  Google Scholar 

  6. Omri N, Yahyaoui M, Banani R, Messaoudi S, Moussa F, Abderrabba M (2016) Ab-initio HF and density functional theory investigations on the synthesis mechanism, conformational stability, molecular structure and UV spectrum of N′-formylkynurenine. J Theor Comput Chem 15:1650006–1650022

    Article  CAS  Google Scholar 

  7. Schettino V, Pagliai M, Ciabini L, Cardini G (2001) The vibrational spectrum of fullerene C60. J Phys Chem A 105:11192–11196

    Article  CAS  Google Scholar 

  8. Loboda O, Zales’ny R, Avramopoulos A, Luis JM, Kirtman B, Tagmatarchis N, Reis H, Papadopoulos MG (2009) Linear and nonlinear optical properties of [60]fullerene derivatives. J Phys Chem A 113:1159–1170

    Article  CAS  PubMed  Google Scholar 

  9. Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383:44–51

    Article  CAS  Google Scholar 

  10. Isaacson CW, Bouchard D (2010) Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J Chromatogr A 1217:1506–1512

  11. Romanova VS, Tsyryapkin VA, Lyakhovetsky YI, Parnes ZN, Vol’pin ME (1994) Addition of amino acids and dipeptides to fullerene C60 giving rise to monoadducts. Russ Chem Bull 43:1090–1091

    Article  Google Scholar 

  12. Zhou DJ, Gan LB, Xu LB, Luo CP, Huang CH (1995) Glycine C60 adduct and its rare earth complexes. Fuller Sci Technol 3:127–131

    Article  CAS  Google Scholar 

  13. Bianco A, Da Ros T, Prato M, Toniolo C (2001) Fullerene-based amino acids and peptides. J Pept Sci 7:208–219

    Article  CAS  PubMed  Google Scholar 

  14. An YZ, Anderson JL, Rubin Y (1993) Synthesis of alpha-amino acid derivatives of C60 from 1, 9-(4-hydroxycyclohexano) buckminsterfullerene. J Org Chem 58:4799–4799

    Article  CAS  Google Scholar 

  15. Ohno M, Kojima S, Shirakawa Y, Eguchi S (1997) Fusion of C60 with cyclic amino acid and Thiourea by hetero Diels-Alder reactions. Heterocycles 46:49–52

    Article  CAS  Google Scholar 

  16. Burley GA, Keller PA, Pyne SG (1999) [60]fullerene amino acids and related derivatives. Fuller Sci Technol 7:973–1001

    Article  CAS  Google Scholar 

  17. Krusic PJ (1991) Radical reactions of C60. Science 254:1183–1188

    Article  CAS  PubMed  Google Scholar 

  18. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 190-192:199–207

    Google Scholar 

  19. Skanji R, Messaouda MB, Zhang Y, Abderrabba M, Szwarc H, Moussa F (2012) Sequential photo-addition of glycine methyl-ester to [60]fullerene. Tetrahedron 63:2713–2718

    Article  CAS  Google Scholar 

  20. Prato P, Chan Li Q, Wudl F, Lucchini V (1993) Addition of azides to fullerene C60: synthesis of azafulleroids. J Am Chem Soc 115:1148–1150

    Article  CAS  Google Scholar 

  21. Troshin PA, Kornev AB, Peregudov SM, Lyubovskaya RN (2007) Benzylamine imines as versatile precursors to azomethine and nitrile ylides in the [2 + 3] cycloaddition reactions with [60]fullerene. Mendeleev Commun 17:116–118

    Article  CAS  Google Scholar 

  22. Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115:9798–9799

    Article  CAS  Google Scholar 

  23. Khemiri N, Messaoudi S, Moussa F, Abderrabba M, Chermette H (2016) Theoretical investigation on two different mechanisms of fulleropyrrolidine formation. Theor Chem Acc 135:265–274

    Article  CAS  Google Scholar 

  24. Omri N, Yahyaoui M, Banani R, Messaoudi S, Moussa F, Abderrabba M (2016) Density functional theory investigation on the conformational analysis, molecular structure and FT-IR spectra of tryptophan methyl-ester molecule. Int J Innov Appl Stud 17:13–32

    CAS  Google Scholar 

  25. Lakowicz JR (1999) Pricipales of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09 revision A02. Gaussian Inc., Wallingford

    Google Scholar 

  27. Frisch A, Neilson AB, Holder AJ (2009) GAUSSVIEW, user manual. Gaussian Inc., Pittsburgh

    Google Scholar 

  28. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  31. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  32. Michael CM, Du X, Kwon J, Mihaly L (1994) Observation and assignment of silent and higher-order vibrations in the infrared transmission of Csu crystals. Phys Rev B 50:173–180

    Article  Google Scholar 

  33. Choi CH, Kertesz M, Mihaly L (2000) Vibrational assignment of all 46 fundamentals of C60 and C60 6−: scaled quantum mechanical results performed in redundant internal coordinates and compared to experiments. J Phys Chem A 104:102–108

    Article  CAS  Google Scholar 

  34. Schettino V, Salvi PR, Bini R, Cardini G (1994) On the vibrational assignment of fullerene C60. J Chem Phys 101:11079–11081

    Article  CAS  Google Scholar 

  35. Giannozzi P, Baroni S (1994) Vibrational and dielectric properties of C60 from density functional perturbation theory. J Chem Phys 100:8537–8539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of Materials, Molecules, and Applications (LMMA, Tunis) for the research fellowship and the laboratory of studies of technical and analytical molecular instruments (LETIAM, Paris) for the collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, N., Khemiri, N., Abderrabba, M. et al. Addition of tryptophan methyl-ester on [60]fullerene: theoretical investigation of the mechanisms of azomethine ylides and fulleropyrrolidine formation. J Mol Model 24, 270 (2018). https://doi.org/10.1007/s00894-018-3760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3760-2

Keywords

Navigation