Skip to main content
Log in

DFT investigation on some nitrogen-doped fullerenes with more antiradical and antioxidant activities than C60

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Although fullerene C60 is a strong scavenger for alkyl radicals, it is insusceptible toward peroxyl radicals. Substitution of carbon atoms in the fullerene cage by heteroatoms could change its electronic properties and improve its antiradical and antioxidant activities. In this study, antiradical and antioxidant activities of C40N20 and C42N18 azafullerenes have been investigated, in comparison with those of the C60, by using DFT methods. Adsorptions of several alkyl and peroxyl radicals on the most active sites of different separated-nitrogen (SN) and nitrogen-belt (NB) isomers of these azafullerenes have been studied by analyzing several parameters and by comparison with the corresponding values of the C60. The results show that both studied isomers of the target azafullerenes exhibit stronger antiradical activities than the C60. It is also concluded that the antiradical activities of NB-isomers are greater than SN-isomers, while SN-isomers have more antioxidant activities than NB-isomers and several times more than fullerene C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brink C, Andersen LH, Hvelplund P, Mathur D, Voldstad JD (1995). Chem Phys Lett 233:52–56

    Article  CAS  Google Scholar 

  2. Krusic PJ, Wasserman E, Parkinson BA, Malone B, Holler Jr ER, Keizer PN, Morton JR, Preston KF (1991). Science 254:1183–1185

    Article  CAS  PubMed  Google Scholar 

  3. McEwen CN, McKay RG, Larsen BS (1992). J Am Chem Soc 114:4412–4414

    Article  CAS  Google Scholar 

  4. Morton JR, Negri F, Preston KF (1995). Magn Reson Chem 33:S20–S27

    Article  CAS  Google Scholar 

  5. Fagan PJ, Krusic PJ, McEwen CN, Lazar J, Parkert DH, Herron N, Wasserman E (1993). Science 262:404–407

    Article  CAS  PubMed  Google Scholar 

  6. Tumanskii BL, Shaposhinikova EN, Bashilov VV, Solodovnikov SP, Bubnov NN, Sterlin SR (1997). Russ Chem Bull 46:1174–1176

    Article  CAS  Google Scholar 

  7. Gasanov RG, Kalina OG, Bashilov VV, Tumanskii BL (1999). Russ Chem Bull 48:2344–2346

    Article  CAS  Google Scholar 

  8. Yang J, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007). Chem Eur J 13:2530–2545

    Article  CAS  PubMed  Google Scholar 

  9. Jensen AW, Wilson SR, Schuster DI (1996). Bioorg Med Chem 4:767–779

    Article  CAS  PubMed  Google Scholar 

  10. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007). Int J Nanomedicine 2:639–649

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Z, Mao R, Liu Y (2012). Curr Drug Metab 13:1035–1045

    Article  CAS  PubMed  Google Scholar 

  12. Wakai H, Shinno T, Yamauchi T, Tsubokawa N (2007). Polymer 48:1972–1980

    Article  CAS  Google Scholar 

  13. Riahi S, Pourhossein P, Zolfaghari A, Ganjali MR, Jooya HZ (2009). Fuller Nanotub Car N 17:159–170

    Article  CAS  Google Scholar 

  14. Warnatz J (1986). Ber Bunsenges Phys Chem 90:494–494

    Article  Google Scholar 

  15. Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985). J Am Chem Soc 107:58–63

    Article  CAS  Google Scholar 

  16. Peng XD, Viswanathan R, Smudde Jr GH, Stair PC (1992). Rev Sci Instrum 63:3930–3935

    Article  CAS  Google Scholar 

  17. Galimov DI, Bulgakov RG, Gazeeva DR (2011). Russ Chem Bull 60:2107–2109

    Article  CAS  Google Scholar 

  18. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002). J Am Chem Soc 124:13384–13385

    Article  CAS  PubMed  Google Scholar 

  19. Sabirov DS, Garipova RR, Bulgakov RG (2013). J Phys Chem A 117:13176–13183

    Article  CAS  PubMed  Google Scholar 

  20. Wright JS, Shadnia H, Chepelev LL (2009). J Comput Chem 30:1016–1026

    Article  CAS  PubMed  Google Scholar 

  21. Narayanan B, Zhao Y, Ciobanu CV (2012) Appl Phys Lett 100:203901–1–203901–4

  22. Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A (2012). Int J Hydrog Energy 37:4144–4160

    Article  CAS  Google Scholar 

  23. Jiménez V, Ramírez-Lucas A, Sánchez P, Valverde JL, Romero A (2012). Appl Surf Sci 258:2498–2509

    Article  CAS  Google Scholar 

  24. Morton JR, Preston KF, Krusic PJ, Hill SA, Wasserman E (1992). J Phys Chem 96:3576–3578

    Article  CAS  Google Scholar 

  25. Gasanov RG, Tumanskii BL (2002). Russ Chem Bull 51:240–242

    Article  CAS  Google Scholar 

  26. Walbiner M, Fischer H (1993). J Phys Chem 97:4880–4881

    Article  CAS  Google Scholar 

  27. Tachikawa H, Iyama T (2015). Phys Status Solidi C 12:659–663

    Article  CAS  Google Scholar 

  28. Tachikawa H, Kawabata H (2015) Jpn J Appl Phys 55:02BB01–1-02BB01–5

  29. Zeynalov EB, Allen NS, Salmanova NI (2009). Polym Degrad Stab 94:1183–1189

    Article  CAS  Google Scholar 

  30. Chi Y, Bhonsle JB, Canteenwala T, Huang JP, Shiea J, Chen BJ, Chiang LY (1998). Chem Lett 27:465–466

    Article  Google Scholar 

  31. Bulgakov RG, Ponomareva YG, Maslennikov SI, Nevyadovsky EY, Antipina SV (2005). Russ Chem Bull 54:1862–1865

    Article  CAS  Google Scholar 

  32. Enes RF, Tomé AC, Cavaleiro JA, Amorati R, Fumo MG, Pedulli GF, Valgimigli L (2006). Chem Eur J 12:4646–4653

    Article  CAS  PubMed  Google Scholar 

  33. Xie RH, Bryant GW, Jensen L, Zhao J, Smith Jr VH (2003). J Chem Phys 118:8621–8635

    Article  CAS  Google Scholar 

  34. Manaa MR, Sprehn DW, Ichord HA (2003). Chem Phys Lett 374:405–409

    Article  CAS  Google Scholar 

  35. Manaa MR, Ichord HA, Sprehn DW (2003). Chem Phys Lett 378:449–455

    Article  CAS  Google Scholar 

  36. Sharma H, Garg I, Dharamvir K, Jindal VK (2009). J Phys Chem A 113:9002–9013

    Article  CAS  PubMed  Google Scholar 

  37. Nekoei AR, Haghgoo S (2015). Comput Theor Chem 1067:148–157

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta Jr JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  39. Becke AD (1993). J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. Van Duijneveldt FB, van Duijneveldt-van de Rijdt JG, van Lenthe JH (1994). Chem Rev 94:1873–1885

    Article  Google Scholar 

  42. Schwenke DW, Truhlar DG (1985). J Chem Phys 82:2418–2426

    Article  CAS  Google Scholar 

  43. Schettino V, Pagliai M, Ciabini L, Cardini G (2001). J Phys Chem A 105:11192–11196

    Article  CAS  Google Scholar 

  44. Zhang J, Fuhrer T, Fu W, Ge J, Bearden DW, Dallas J, Duchamp J, Walker K, Champion H, Azurmendi H, Harich K (2012). J Am Chem Soc 134:8487–8493

    Article  CAS  PubMed  Google Scholar 

  45. Montoya A, Truong TN, Sarofim AF (2000). J Phys Chem A 104:6108–6110

    Article  CAS  Google Scholar 

  46. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  47. Wiberg KB (1968). Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  48. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission KS

  49. Gilardoni F, Weber J, Chermette H, Ward TR (1998). J Phys Chem A 102:3607–3613

    Article  CAS  Google Scholar 

  50. Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  51. Arulmozhiraja S, Kolandaivel P (1997). Mol Phys 90:55–62

    Article  CAS  Google Scholar 

  52. Tzirakis MD, Orfanopoulos M (2013). Chem Rev 113:5262–5321

    Article  CAS  PubMed  Google Scholar 

  53. Morton JR, Negri F, Preston KF (1998). Acc Chem Res 31:63–69

    Article  CAS  Google Scholar 

  54. Tachikawa H, Iyama T, Abe S (2011). Phys Procedia 14:139–142

    Article  CAS  Google Scholar 

  55. Bulgakov RG, Galimov DI, Gazeeva DR (2013). Fuller Nanotub Car N 21:869–878

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A-Reza Nekoei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekoei, AR., Haghgoo, S. DFT investigation on some nitrogen-doped fullerenes with more antiradical and antioxidant activities than C60. Struct Chem 30, 1737–1748 (2019). https://doi.org/10.1007/s11224-019-01311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01311-2

Keywords

Navigation