Skip to main content
Log in

Theoretical investigation on two different mechanisms of fulleropyrrolidine formation

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Fulleropyrrolidine synthesis by photo-addition of glycine methyl ester (GME) to [60] fullerene has been recently realized and experimentally studied. Two possible hypotheses were suggested for its formation pathway, but there was no consensus about the most favorable one. Thus, in order to find the most probable mechanism, we performed a detailed theoretical investigation of the reaction between GME and [60] fullerene studying both mechanisms suggested experimentally. The first hypothesis involves two additions of two GME radicals in two steps to C60 followed by a NH3 departure, whereas the second one involves azomethine ylide formation in a first step and followed by a cycloaddition to [60] fullerene. All the transition states and the intermediates in the reaction steps for both mechanisms were determined. The energetic profiles of both mechanisms were drawn and compared. Several levels of theory were used for the purpose, with the aim to investigate which low-cost level is sufficient to settle and which mechanism is probably involved. For the purpose, semiempirical (AM1), DFT on geometries optimized at AM1 level, and finally DFT on geometries optimized at DFT level were considered. At DFT level, GGA (PBE), hybrid (PBE0) and meta-GGA (M06-2X) were used, with a 6-31+G(d) basis set. We proved that the release of NH3 and the ring formation step in the first mechanism require a higher energy barrier compared to the second mechanism reaction steps like tautomerization and H2O departure. Thus, we can conclude that the second mechanism involving in a first step the azomethine ylide formation is more favorable than the first mechanism. The interest in using in a first step a semiempirical determination of reaction paths is highlighted, and the choice of the exchange–correlation functional is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bouchard D, Ma X (2008) J Chromatogr A 1203:153–159

    Article  CAS  Google Scholar 

  2. Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D (2010) J Hydrol 383:44–51

    Article  Google Scholar 

  3. Carl Isaacson W, Bouchard D (2010) J Chromatogr A 1217:1506–1512

    Article  Google Scholar 

  4. Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2008) ACS Nano 2:327–333

    Article  CAS  Google Scholar 

  5. Maeda-Mamiya R, Noiri E, Isobe H, Nakanishi W, Okamoto K, Kent Doi K, Sugaya T, Izumi T, Homma T, Nakamura E (2010) PNAS 107:5339–5344

    Article  CAS  Google Scholar 

  6. Gao J, Wang Y, Folta KM, Krishna V, Bai W, Indeglia P, Georgieva A, Nakamura H, Koopman B, Moudgil B (2011) PLoS ONE 6:19976

    Article  Google Scholar 

  7. Nanotechnol Nat (2010) 25 years of C60 5: 691–693

  8. Miller GP (2006) C R Chim 9:952–959

    Article  CAS  Google Scholar 

  9. Troshin PA, Peregudov AS, Meuhlbacher D, Lyubovskaya RN (2005) Eur J Org Chem 2005:3064–3074

    Article  Google Scholar 

  10. Troshina OA, Troshin PA, Peregudov AS, Kozlovski VI, Lyubovskaya RN (2006) Chem Eur J 12:5569–5577

    Article  CAS  Google Scholar 

  11. Troshin PA, Kornev AB, Peregudov AS, Peregudova SM, Lyubovskaya RN (2007) Mendeleev Commun 17:116–118

    Article  CAS  Google Scholar 

  12. Bernstein R, Foote CS (1999) J Phys Chem A 103:7244–7247

    Article  CAS  Google Scholar 

  13. Skanji R, Ben Messaouda M, Zhang Y, Abderrabba M, Szwarc H, Moussa F (2012) Tetrahedron 68:2713–2718

    Article  CAS  Google Scholar 

  14. Maggini M, Scorrano G, Prato M (1993) J Am Chem Soc 115:9798–9799

    Article  CAS  Google Scholar 

  15. De Person M, Coffre A, Skanji R, Ben Messaouda M, Abderrabba M, Zhang Y, Moussa F (2013) Tetrahedron 69:6826–6831

    Article  Google Scholar 

  16. Juan S, Jeria G, Gonzalez-Tejeda N, Sotomorales F (2003) J Chil Chem Soc 48:41–43

    Google Scholar 

  17. Stewart JJP (2013) J Mol Model 19:1–32

    Article  CAS  Google Scholar 

  18. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) J Phys Chem A 117:12590–12600

    Article  CAS  Google Scholar 

  19. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09, revision A.02. Gaussian Inc, Wallingford

  21. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  22. Fonseca Guerra C, Snijders JG, teVelde G, Baerends EJ (1998) Theor Chem Acc 99:391–403

    Google Scholar 

  23. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Faassen M van, Fan L, Fischer TH, Fonseca Guerra C, Franchini M, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, Hoek P van den, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, Kessel G van, Kootstra F, Kovalenko A, Krykunov MV, Lenthe E van, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schoot H van, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, Velde G te, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, Wezenbeek EM van, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL ADF2016, SCM, theoretical chemistry, VrijeUniversiteit, Amsterdam, The Netherlands, http://www.scm.com

  24. Koch W (2001) Holthausen MC A Chemist’s Guide to Density Functional Theory. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  25. del Campo JM, Gázquez JL, Trickey SB, Vela A (2012) J Chem Phys 136:104108

    Article  Google Scholar 

  26. Scott AP (1996) L. Radom. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  27. Tantirungrotechai Y, Phanasant K, Roddecha S, Surawatanawong P, Sutthikhum V, Limtrakul J (2006) J Mol Struct Theochem 760:189–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NK acknowledges the theoretical chemistry team of the Institute of Analytical Sciences, Villeurbanne, Lyon, France, for a two-month stay in the laboratory. The GENCI/CINES is acknowledged for HPC resources/computer time (Project cpt2130), as well as the PSMN meso-center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noura Khemiri.

Additional information

LETIAM was formerly Groupe de Chimie Analytique de Paris-Sud EA 4041.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khemiri, N., Messaoudi, S., Moussa, F. et al. Theoretical investigation on two different mechanisms of fulleropyrrolidine formation. Theor Chem Acc 135, 265 (2016). https://doi.org/10.1007/s00214-016-2018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2018-2

Keywords

Navigation