Skip to main content
Log in

Inorganic benzenes as the noncovalent interaction donor: a study of the π-hole interactions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

For inorganic benzenes C3N3X3 and B3O3X3 (X = H, F, CN), the positive electrostatic potentials (π-hole) were discovered above and below the inorganic benzene ring center. Then, the π-hole interactions between the inorganic benzenes and NCH have been designed and investigated by MP2/aug-cc-pVDZ calculations. In this paper, the termolecular complexes B3O3X3···NCH···NCH, C3N3X3···NCH···NCH (X = H, F, CN) were also designed to illustrate the enhancing effects of the H···N hydrogen bond on the π-hole interactions. The π-hole interaction energy was influenced by the strength of different electron-withdrawing substituents of inorganic benzenes, gradually increasing in the order of X = H, F, CN. What’s more, the π electron densities account for 71~88% of the total electron densities, indicating the strength of interaction energy is mainly determined by π-type electron densities.

The termolecular complexes B3O3X3···NCH···NCH, C3N3X3···NCH···NCH (X = H, F, CN) were designed to illustrate the enhancing effects of the H···N hydrogen bond on the π-hole interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–167

    Article  Google Scholar 

  2. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    Article  CAS  Google Scholar 

  3. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G, Pilati T, Biella S (2007) Acta Crystallogr 61:105–136

    Google Scholar 

  5. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  6. Wang H, Wang W, Jin WJ (2016) Chem Rev 116:5072–5104

    Article  CAS  Google Scholar 

  7. Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  8. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  9. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  10. Lang T, Li X, Meng L, Zheng S, Zeng Y (2014) Struct Chem 26:213–221

    Article  Google Scholar 

  11. Murray JS, Shields ZP, Seybold PG, Politzer P (2015) J Comput Sci 10:209–216

    Article  Google Scholar 

  12. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2017) J Comput Chem. https://doi.org/10.1002/jcc.24891

  14. Zeng Y, Zhang X, Li X, Meng L, Zheng S (2011) ChemPhysChem 12:1080–1087

    Article  CAS  Google Scholar 

  15. Pierrefixe SCAH, Bickelhaupt FM (2008) Aust J Chem 61:209–215

    Article  CAS  Google Scholar 

  16. Engelberts JJ, Havenith RWA, van Lenthe JH, Jenneskens LW, Fowler PW (2005) Inorg Chem 44:5266–5272

    Article  CAS  Google Scholar 

  17. Jemmis ED, Kiran B (1998) Inorg Chem 37:2110–2116

    Article  CAS  Google Scholar 

  18. Cyrański MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) J Organomet Chem 67:1333–1338

    Article  Google Scholar 

  19. Cyrański MK, Schleyer PR, Krygowski TM, Jiao H, Hohlneicher G (2003) Tetrahedron 59:1657–1665

    Article  Google Scholar 

  20. Phukan AK, Guha AK, Silvi B (2010) Dalton Trans 39:4126–4137

    Article  CAS  Google Scholar 

  21. Wu W, Li X, Meng L, Zheng S, Zeng Y (2015) J Phys Chem A 119:2091–2097

    Article  CAS  Google Scholar 

  22. Matsunaga N, Gordon MS (1994) J Am Chem Soc 116:11407–11419

    Article  CAS  Google Scholar 

  23. Feng XJ, Zhang M, Zhao LX, Zhang HY, Luo YH (2014) Comput Theor Chem 1029:84–90

    Article  CAS  Google Scholar 

  24. Fowler PW, Steiner E (1997) J Phys Chem A 101:1409–1413

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. (2010) Gaussian 09. Gaussian Inc., Wallingford

  26. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  27. Woon DE, Dunning TH (1995) J Phys Chem A 103:4572–4585

    Article  CAS  Google Scholar 

  28. Dunning TH (1989) J Phys Chem A 90:1007–1023

    Article  CAS  Google Scholar 

  29. Boys SF, Bernardi F (2006) Mol Phys 19:553–566

    Article  Google Scholar 

  30. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  31. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  33. Popelier PLA (2000) Atoms in molecules: an introduction. Pearson, Harlow

  34. Biegler-König F (2000) AIM 2000, version 1.0. University of Applied Science Bielefeld, Germany

    Google Scholar 

  35. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  36. Azami SM (2010) J Phys Chem A 114:11794–11797

    Article  CAS  Google Scholar 

  37. Zeng Y, Zhu M, Meng L, Zheng S (2011) ChemPhysChem 12:3584–3590

    Article  CAS  Google Scholar 

  38. Zeng Y, Wu W, Li X, Zheng S, Meng L (2013) ChemPhysChem 14:1591–1600

    Article  CAS  Google Scholar 

  39. Daudel R (1952) C R Acad Sci 235:886–888

    CAS  Google Scholar 

  40. Roux M, Besnainou S, Daudel R (1956) J Chim Phys 53:218–221

    Article  Google Scholar 

  41. Roux M, Daudel R (1995) C R Acad Sci 240:90–92

    Google Scholar 

  42. Zheng SJ, Hada M, Nakatsuji H (1996) Theor Chim Acta 93:67–78

    Article  CAS  Google Scholar 

  43. Li X, Zeng Y, Zhang X, Zheng S, Meng L (2011) J Mol Model 17:757–767

    Article  CAS  Google Scholar 

  44. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Contract Nos: 21371045, 21373075), the Natural Science Foundation of Hebei Province (Contract Nos: B2015205045). Thanks are also due to the Education Department of Hebei Province of China through innovative hundred talents support program (SLRC2017041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zeng.

Ethics declarations

The manuscript has full control of all primary data, and the authors agree to allow the journal to review their data if requested. The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, R., Zhang, X., Meng, L. et al. Inorganic benzenes as the noncovalent interaction donor: a study of the π-hole interactions. J Mol Model 23, 335 (2017). https://doi.org/10.1007/s00894-017-3513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3513-7

Keywords

Navigation