Skip to main content
Log in

Conformational rearrangement of 1,2-d(GG) intrastrand cis-diammineplatinum crosslinked DNA is driven by counter-ion penetration within the minor groove of the modified site

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The major structural aberrations of DNA induced by a cis-diammineplatinum (II) 1,2-d(GG) intrastrand cross-link (CPT) have been known for decades. To gain deeper insights into the structural dynamics of the sequence-dependent DNA distortions adjacent to the CPT adduct, we employed molecular modeling and molecular dynamics (MD) simulations. The structural dynamics of native (N-DNA) and cisPt 1,2-d(GG) crosslinked (CPT-DNA) in the form of symmetric 36 nt d(G2T15G*G*T15G2)●C2A15CCA15C2) oligonucleotide duplexes is compared. The selected sequence context enabled tracking of the origin of the DNA axis curvature at the YpR flexible points (N-DNA), the enhancement of axis bending, and further distortions due to steric/electrostatic perturbations arising from the CPT-crosslink. In addition to the known structural distortions of CPT-DNA: helix bend towards the major groove; local helix unwinding; high roll angle between cross-linked guanine bases; and adoption of A-form DNA on the 5′-side of the CPT-crosslink (TpG junction); our results show the existence of a singular irreversible and reproducible conformational rearrangement, not previously observed, resulting in two stable CPT-DNA1 and CPT-DNA2 conformers. The CPT-DNA2 conformation presents an enhanced DNA axis bend and a wider and shallower minor grove with increased solvent accessibility within the modified site. It is concluded that the polymorphous (unstable) DNA environment near the cisPt 1,2-d(GG) unit in synergy with specific dynamic events, such as prolonged minor groove retention of particular Na+ ions and water redistribution within the d(TG*G*T) site, together with the formation of extra and more stable H-bonds between Pt(NH3)2 amines and neighboring nucleotides, are cooperatively responsible for the initiation of the conformational rearrangement leading to the CPT-DNA2 conformer, which, surprisingly, closely resembles the HMGB1-bound CPT-DNA structure.

Superimposed averaged structures of normal (N-DNA, green) and cisplatin intrastrand cross-linked (CPT-DNA, orange). Global DNA axes: N-DNA (blue beads); CPT-DNA (red beads); PT (yellow sphere); crosslinked dGs viewed from the minor groove (bold)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kartalou M, Essigmann JM (2001) Recognition of cisplatin adducts by cellular proteins. Mut Res 478:1–21

    Article  CAS  Google Scholar 

  2. Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407

    Article  CAS  PubMed  Google Scholar 

  3. Ohndorf U-M, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708–712

    Article  CAS  PubMed  Google Scholar 

  4. Widlak P, Pietrowska M, Lanuszewska J (2006) The role of chromatin proteins in DNA damage recognition and repair. Histochem Cell Biol 125:119–126

    Article  CAS  PubMed  Google Scholar 

  5. Ugrinova I, Zlateva S, Pashev IG, Pasheva EA (2009) Native HMGB1 protein inhibits repair of cisplatin-damaged nucleosomes in vitro. Int J Biochem Cell Biol 41:1556–1562

    Article  CAS  PubMed  Google Scholar 

  6. Visse R, de Ruijter M, Brouwer J, Brandsma JA, van de Putte P (1991) Uvr excision repair protein complex of escherichia coli binds to the convex side of a cisplatin-induced kink in the DNA. J Biol Chem 266:7609–7617

    CAS  PubMed  Google Scholar 

  7. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377:649–652

    Article  CAS  PubMed  Google Scholar 

  8. Todd RC, Lippard SJ (2010) Structure of duplex DNA containing the cisplatin 1,2-{pt(NH3)2}2+−d(GpG) cross-link at 1.77 Å resolution. J Inorg Biochem 104:902–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elizondo-Riojas MA, Kozelka J (2001) Unrestrained 5 ns molecular dynamics simulation of a cisplatin-DNA 1,2-GG adduct provides a rationale for the NMR features and reveals increased conformational flexibility at the platinum binding site. J Mol Biol 314:1227–1243

    Article  CAS  PubMed  Google Scholar 

  10. Gelasco A, Lippard SJ (1998) NMR solution structure of a DNA Dodecamer duplex containing a cis-Diammineplatinum(II) d(GpG) Intrastrand cross-link, the major adduct of the anticancer drug Cisplatin. Biochemist 37:9230–9239

  11. Wu Y, Bhattacharyya D, King CL, Baskerville-Abraham I, Huh S-H, Boysen G, Swenberg JA, Temple B, Campbell SL, Chaney SG (2007) Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link. Biochemist 46:6477–6487

    Article  CAS  Google Scholar 

  12. Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG, S.G. (2007) Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastand cross-links reveal differences in their conformational dynamics. J Mol Biol 373:1123–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bhattacharyya D, Ramachandran S, Sharma S, Pathmasiri W, King CL, Baskerville-Abraham I, Boysen G, Swenberg JA, Campbell SL, Dokholyan NV, Chaney SG (2011) Flanking bases influence the nature of DNA distortion by platinum 1,2-intrastrand (GG) cross-links. PLoS One 6(8):e23582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rice JA, Crothers DM, Pinto AL, Lippard SJ (1988) The major adduct of the antitumor drug cis-diamminedichloroplatinum(II) with DNA bends the duplex by =40° toward the major groove. Proc Natl Acad Sci USA 85:4158–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bellon SF, Coleman JH, Lippard SJ (1991) DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum( II). Biochemist 30:8026–8035

    Article  CAS  Google Scholar 

  16. Sprous D, Young MA, Beveridge DL (1999) Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature. J Mol Biol 285:1623–1632

    Article  CAS  PubMed  Google Scholar 

  17. Pérez A, Lankas F, Luque FJ, Orozco M (2008) Towards a molecular dynamics consensus view of B-DNA flexibility. Nucleic Acids Res 36:2379–2394

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mocci F, Saba G (2003) Molecular dynamics simulations of AT-rich oligomers: sequence-specific binding of Na+ in the minor groove of B-DNA. Biopolymers 68:471–485

    Article  CAS  PubMed  Google Scholar 

  19. Curuksu J, Zacharias M, Lavery R, Zakrzewska K (2009) Local and global effects of strong DNA bending induced during molecular dynamics simulations. Nucleic Acids Res 37:3766–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Várnai P, Zakrzewska K (2004) DNA and its counterions: a molecular dynamics study. Nucleic Acids Res 32:4269–4280

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gurlie R, Zakrzewska K (2001) Protein-induced DNA bending: the role of phosphate neutralization. Theor Chem Accounts 106:83–90

    Article  CAS  Google Scholar 

  22. Privalov PL, Dragan AI, Crane-Robinson C, Breslauer KJ, Remeta DP, Minetti CASA (2007) What drives proteins into the major or minor grooves of DNA? J Mol Biol 365:1–9

    Article  CAS  PubMed  Google Scholar 

  23. Oguey C, Foloppe N, Hartman B (2010) Understanding the sequence-dependence of DNA groove dimensions: implications for DNA interactions. PLoS One 5:e15931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fogg JM, Randall GL, Pettitt BM, Sumners DWL, Harris SA, Zechiedrich L (2012) Bullied no more: when and how DNA shoves proteins around. Q Rev Biophys 45:257–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. SYBYL-X 2.1, Tripos International. Certara, St. Louis, MO

  26. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco,

    Google Scholar 

  27. Pérez A, Marchán I, Svozil D, Šponer J, Cheatham III TE, Laughton CA, Orozco M (2007) Refinement of the AMBER force field for nucleic acids: improving the description of a/g conformers. Biophys J 92:3817–3829

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yao S, Plastaras JP, Marzilli LG (1994) A molecular mechanics AMBER-type force field for modeling platinum complexes of guanine derivatives. Inorg Chem 33:6061–6077

    Article  CAS  Google Scholar 

  29. Price DJ, Brooks III CL (2004) A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys 121:10096–10103

    Article  CAS  PubMed  Google Scholar 

  30. Fletcher R, Reeves CM (1965) Function minimization by conjugate gradients. Comp J 7:149–154

    Article  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graphics Modell 14:33–38

    Article  CAS  Google Scholar 

  32. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wan H, Hu J-p, K-s L, X-h T, Chang S (2013) Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors. PLoS One 8(10):e76045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  35. Blanchet C, Pasi M, Zakrzewska K, Lavery R (2011) CURVES+ web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res 39:W68–W73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Strahs D, Schlick T (2000) A-tract bending: insights into experimental structures by computational models. J Mol Biol 301:643–663

    Article  CAS  PubMed  Google Scholar 

  37. Goodsell DS, Dickerson RE (1994) Bending and curvature calculations in B-DNA. Nucleic Acids Res 22:5497–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsui V, Case DA (2000) Molecular dynamics simulations of nucleic acids with a generalized born solvation model. J Am Chem Soc 122:2489–2498

    Article  CAS  Google Scholar 

  39. Vlahoviček K, Kaján L, Pongor S (2003) DNA analysis servers: plot.It, bend.It, model.It and IS. Nucleic Acids Res 31:3686–3687

    Article  PubMed  PubMed Central  Google Scholar 

  40. Spitzer GM, Fuchs JE, Markt P, Kirchmair J, Wellenzohn B, Langer T, Liedl KR (2008) Sequence-specific positions of water molecules at the interface between dna and minor groove binders. Chem Phys Chem 9:2766–2771

    Article  CAS  PubMed  Google Scholar 

  41. Zhu X, Schatz GC (2012) Molecular dynamics study of the role of the spine of hydration in DNA A-tracts in determining Nucleosome occupancy. J Phys Chem B 116:13672–13681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dršata T, Špačková N, Jurečka P, Zgarbová M, Šponer J, Lankaš P (2014) Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res 42:7383–7394

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lankaš F, Šponer J, Langowski J, Cheatham III TE (2003) DNA basepair step deformability inferred from molecular dynamics simulations. Biophys J 85:2872–2883

    Article  PubMed  PubMed Central  Google Scholar 

  44. Noy A, Golestanian R (2010) The chirality of DNA: elasticity cross-terms at base-pair level including A-tracts and the influence of ionic strength. J Phys Chem B 114:8022–8031

    Article  CAS  PubMed  Google Scholar 

  45. Lavery R, Zakrzewska K, Beveridge D, Bishop TC, Case DA, Cheatham III T, Dixit S, Jayaram B, Lankaš F, Laughton C, Maddocks JH, Michon A, Osman R, Orozco M, Pérez A, Singh T, Špačkova N, Šponer J (2010) A systematic molecular dynamics study of nearest neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res 38:299–313

    Article  CAS  PubMed  Google Scholar 

  46. Gantchev TG, Hunting DJ (2010) Modeling the interactions of the nucleotide excision repair UvrA2 dimer with DNA. Biochemist 49:10912–10924

    Article  CAS  Google Scholar 

  47. Ramachandran S, Temple BR, Chaney SG, Dokholyan NV (2009) Structural basis for the sequence-dependent effects of platinum–DNA adducts. Nucleic Acids Res 37:2434–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ponomarev SY, Thayer KM, Beveridge DL (2004) Ion motions in molecular dynamics simulations on DNA. Proc Natl Acad Sci USA 101:14771–14775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spiriti J, Kamberaj H, de Graff AMR, Thorpe MF, van der Vaart A (2012) DNA bending through large angles is aided by ionic screening. J. Chem Theory Comput 8:2145–2156

    Article  CAS  PubMed  Google Scholar 

  50. Stehlikova K, Kostrhunova H, Kasparkova J, Brabec V (2002) DNA bending and unwinding due to major 1,2-GG intrastrand cross-link formed by antitumor cis-diamminedichloroplatinum (II) are flanking-base independent. Nucleic Acids Res 30:2894–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camenisch U, Dip R, Vitanescu SM, Naegeli H (2007) Xeroderma pigmentosum complementation group a protein is driven to nucleotide excision repair sites by electrostatic potential of distorted DNA. DNA Repair 6:1819–1828

    Article  CAS  PubMed  Google Scholar 

  52. Wang H, Lu M, Tang M-S, Van Houten B, Ross JBA, Weinfeld M, Le XC (2009) DNA wrapping is required for DNA damage recognition in the Escherichia Coli DNA nucleotide excision repair pathway. Proc Natl Acad Sci USA 106:12849–12854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramachandran S, Temple B, Alexandrova AN, Chaney SG, Dokholyan NV (2012) Recognition of platinum−DNA adducts by HMGB1a. Biochemist 51:7608–7617

    Article  CAS  Google Scholar 

  54. Elder RM, Jayaraman A (2012) Role of structure and dynamics of DNA with cisplatin and oxaliplatin adducts in various sequence contexts on binding of HMGB1a. Mol Simul 38:793–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supercomputer CPU time allocation at the National Supercomputing Center (NSC, Sofia, Bulgaria) and methodological support by its staff and Director (Prof. St. Markov) are gratefully acknowledged.

Funding

This work was supported by the National Science Fund at the Ministry of Education and Science, grant # B01/20–2012 and by a NSERC Discovery grant (DH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetan G. Gantchev.

Electronic supplementary material

ESM 1

(PDF 2703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantchev, T.G., Petkov, P.S. & Hunting, D.J. Conformational rearrangement of 1,2-d(GG) intrastrand cis-diammineplatinum crosslinked DNA is driven by counter-ion penetration within the minor groove of the modified site. J Mol Model 23, 278 (2017). https://doi.org/10.1007/s00894-017-3445-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3445-2

Keywords

Navigation