Skip to main content
Log in

Controlling light absorption and photoelectric properties of coumarin-triphenylaminedye by different acceptor functional groups

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ground state and excited state properties of three coumarin dyes, ZCJ1, ZCJ2 and ZCJ3, including ground state structures, energy levels, absorption spectra and driving forces of electron injection, were investigated via density functional theory (DFT) and time-dependent density functional theory (TD-DFT). In addition, five new molecules ZCJ3-1, ZCJ3-2, ZCJ3-3, ZCJ3-4 and ZCJ3-5 were designed through the introduction of a –CN group into molecule ZCJ3. The ground state and excited state properties of the five designed molecules were also calculated and compared with that of the original molecule, aiming to investigate the effect of different position of –CN groups on the optical and electrical properties of dye molecules. Moreover, the external electric field was taken into account. The results indicated that all three original molecules have better absorption within the visible-light range, and the molecule with a thiophene–thiophene conjugated bridge enables a red shift of the absorption spectrum. The molecule with a thiophene–benzene ring conjugated bridge enables the increase of driving force of electron injection. The energy levels, spectra and driving force of electron injection for the designed molecules are discussed in terms of studying their potential utility in dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42(11):1788–1798

    Article  Google Scholar 

  3. Cao Y, Bai Y, Yu Q, Cheng Y, Liu S, Shi D, Gao F, Wang P (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113(15):6290–6297

    Article  CAS  Google Scholar 

  4. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Article  CAS  Google Scholar 

  5. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634

    Article  CAS  Google Scholar 

  6. Kanaparthi RK, Kandhadi J, Giribabu L (2012) Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 68(40):8383–8393

    Article  CAS  Google Scholar 

  7. Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for Dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  CAS  Google Scholar 

  8. Zhang YH, Ren PH, Li YZ, Su RZ, Zhao MY (2015) Optical absorption and electron injection of 4-(cyanomethyl)benzoic acid based dyes: a DFT study. J Chem 2015:9

    Google Scholar 

  9. Li H, Chen M (2013) Structure–property relationships for three indoline dyes used in dye-sensitized solar cells: TDDFT study of visible absorption and photoinduced charge-transfer processes. J Mol Model 19(12):5317–5325

    Article  CAS  Google Scholar 

  10. Wang Z-S, Cui Y, Dan-oh Y, Kasada C, Shinpo A, Hara K (2008) Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells. J Phys Chem C 112(43):17011–17017

    Article  CAS  Google Scholar 

  11. Urbani M, Grätzel M, Nazeeruddin MK, Torres T (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114(24):12330–12396

    Article  CAS  Google Scholar 

  12. Mathew S, Iijima H, Toude Y, Umeyama T, Matano Y, Ito S, Tkachenko NV, Lemmetyinen H, Imahori H (2011) Optical, electrochemical, and photovoltaic effects of an electron-withdrawing tetrafluorophenylene bridge in a push–pull porphyrin sensitizer used for dye-sensitized solar cells. J Phys Chem C 115(29):14415–14424

    Article  CAS  Google Scholar 

  13. Kajiyama S, Uemura Y, Miura H, Hara K, Koumura N (2012) Organic dyes with oligo-n-hexylthiophene for dye-sensitized solar cells: relation between chemical structure of donor and photovoltaic performance. Dyes Pigments 92(3):1250–1256

    Article  CAS  Google Scholar 

  14. Zafer C, Gultekin B, Ozsoy C, Tozlu C, Aydin B, Icli S (2010) Carbazole-based organic dye sensitizers for efficient molecular photovoltaics. Sol Energy Mater Sol Cells 94(4):655–661

    Article  CAS  Google Scholar 

  15. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of Dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126(39):12218–12219

    Article  CAS  Google Scholar 

  16. Ito S, Miura H, Uchida S, Takata M, Sumioka K, Liska P, Comte P, Pechy P, Gratzel M (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem Commun 44(41):5194–5196

    Article  Google Scholar 

  17. Kim S, Lee JK, Kang SO, Ko J, Yum JH, Fantacci S, De Angelis F, Di Censo D, Nazeeruddin MK, Grätzel M (2006) Molecular engineering of organic sensitizers for solar cell applications. J Am Chem Soc 128(51):16701–16707

    Article  CAS  Google Scholar 

  18. Gupta A, Armel V, Xiang W, Bilic A, Evans RA (2015) New organic sensitizers using 4-(cyanomethyl)benzoic acid as an acceptor group for dye-sensitized solar cell applications. Dyes Pigments 113:280–288

    Article  CAS  Google Scholar 

  19. Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes. Sol Energy Mater Sol Cells 77(1):89–103

    Article  CAS  Google Scholar 

  20. Ying W, Yang J, Wielopolski M, Moehl T, Moser J-E, Comte P, Hua J, Zakeeruddin SM, Tian H, Gratzel M (2014) New pyrido[3,4-b]pyrazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chem Sci 5(1):206–214

    Article  CAS  Google Scholar 

  21. Zhong C, Gao J, Cui Y, Li T, Han L (2015) Coumarin-bearing triarylamine sensitizers with high molar extinction coefficient for dye-sensitized solar cells. J Power Sources 273:831–838

    Article  CAS  Google Scholar 

  22. Sun M, Xu H (2012) A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 8(18):2777–2786

    Article  CAS  Google Scholar 

  23. Zhao G-J, Liu J-Y, Zhou L-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111(30):8940–8945

    Article  CAS  Google Scholar 

  24. Zhao G-J, Han K-L (2007) Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching. J Phys Chem A 111(38):9218–9223

    Article  CAS  Google Scholar 

  25. Li Y, Pullerits T, Zhao M, Sun M (2011) Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J Phys Chem C 115(44):21865–21873

    Article  CAS  Google Scholar 

  26. Xie M, Bai F-Q, Wang J, Kong C-P, Chen J, Zhang H-X (2016) Theoretical description of dye regeneration on the TiO2–dye–electrolyte model. Comput Mater Sci 111:239–246

    Article  CAS  Google Scholar 

  27. Sun C, Li Y, Qi D, Li H, Song P (2016) Optical and electrical properties of purpurin and alizarin complexone as sensitizers for dye-sensitized solar cells. J Mater Sci Mater Electron 27:8027–8039

    Article  CAS  Google Scholar 

  28. Ren X-F, Kang G-J, He Q-Q (2015) Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation. J Mol Model 22(1):1–9

    Google Scholar 

  29. Zarate X, Schott-Verdugo S, Rodriguez-Serrano A, Schott E (2016) The nature of the donor motif in acceptor-bridge-donor dyes as an influence in the electron photo-injection mechanism in DSSCs. J Phys Chem A 120(9):1613–1624

    Article  CAS  Google Scholar 

  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871

    Article  Google Scholar 

  31. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  32. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  33. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  34. Ordon P, Tachibana A (2005) Investigation of the role of the C-PCM solvent effect in reactivity indices. J Chem Sci 117(5):583–589

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc, Wallingford, CT, USA

    Google Scholar 

  36. Song P, Li YZ, Ma FC, Sun MT (2015) Insight into external electric field dependent photoinduced intermolecular charge transport in BHJ solar cell materials. J Mater Chem C 3(18):4810–4819

    Article  CAS  Google Scholar 

  37. Li H, Li Y, Chen M (2014) Molecular design of organic sensitizers absorbing over a broadened visible region for dye-sensitized solar cells. RSC Adv 4(101):57916–57922

    Article  CAS  Google Scholar 

  38. Li YZ, Sun CF, Qi DW, Song P, Ma FC (2016) Effects of different functional groups on the optical and charge transport properties of copolymers for polymer solar cells. RSC Adv 6:61809–61820

    Article  CAS  Google Scholar 

  39. Cui L, Wang P, Fang Y, Li Y, Sun M (2015) A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment. Sci Rep 5:11920

    Article  Google Scholar 

  40. Sun CF, Qi DW, Li YZ, Yang LP (2015) Tunable spectra and charge transfer process of benzodifurandione-based polymer by sulfur substitution. RSC Adv 5(24):18492–18500

    Article  CAS  Google Scholar 

  41. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126(6):1977–1979

    Article  CAS  Google Scholar 

  42. Olbrechts G, Munters T, Clays K, Persoons A, Kim O-K, Choi L-S (1999) High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering. Opt Mater 12(2–3):221–224

    Article  Google Scholar 

  43. Rehm D, Weller A (1970) Kinetics of fluorescence quenching by electron and H-atom transfer. Isr J Chem 8(2):259–271

    Article  CAS  Google Scholar 

  44. Qin C, Clark AE (2007) DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem Phys Lett 438(1–3):26–30

    Article  CAS  Google Scholar 

  45. Hinchliffe A, Soscún HJ (2005) Ab initio studies of the dipole moment and polarizability of azulene in its ground and excited singlet states. Chem Phys Lett 412(4–6):365–368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Heilongjiang Postdoctoral Grant (LBH-Z15002), China Postdoctoral Science Foundation (2016 M590270), the National Natural Science Foundation of China (Grant Nos. 11404055 and 11374353), the Fundamental Research Funds for the Central Universities (Grant No. 2572014CB31), the Heilongjiang Provincial Youth Science Foundation (Grant Nos. QC2013C006), National Undergraduate Innovative and Entrepreneurial Training Program (Grant No: 201610225099) and Academic Research Training of NEFU for Undergraduate (Grant No: KY2015020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanzuo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Bai, Y., Li, Y. et al. Controlling light absorption and photoelectric properties of coumarin-triphenylaminedye by different acceptor functional groups. J Mol Model 22, 277 (2016). https://doi.org/10.1007/s00894-016-3149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3149-z

Keywords

Navigation