Skip to main content

Advertisement

Log in

Theoretical investigation for dye-sensitized solar cells: effect of donor variation on the optoelectronic properties and charge transfer parameters

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, we are interested to the effect of the variation in donor groups (D) mainly carbazole, triphenylamine, diethylaniline and phenothiazine, on a series of organic compounds, using Density-Functional Theory (DFT) and Time-Dependent Becke–Half and Half–Lee–Yang–Parr's (TD-BHandHLYP). The aim is to elucidate the different geometrical and optoelectronic properties, as well as the charge transfer parameters (Ionization potential (IP), Electron affinity (EA), Reorganization energy (λ), Light harvesting efficiency (LHE), Open circuit voltage (Voc), Injection energy (ΔGinject) and Regeneration energy (ΔGreg)), chemical reactivity parameters (Electronegativity (χ), Chemical potential (μ), and Electrophilicity index (ω)) of the studied dyes and intermolecular interactions dyes/semiconductor. Using triphenylamine and diethylaniline as donors (D), we have been able to get the lowest Egap energies, with respective values roughly equivalent to 1.77 and 1.78 eV and high maximum absorption wavelengths (607.84 and 609.70 nm) when compared to the other donor groups. Likewise, the introduction of these units increased the photon-current conversion capacity, characterized by better LHE values (0.980 and 0.975 eV, respectively) and higher Voc (0.91 and 0.95 eV, respectively), which would improve the charge transfer performance and chemical reactivity indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are available and mainly the Cartesian Coordinates of all the studied dyes.

References

  1. M. Grätzel, Acc Chem Res. (2009). https://doi.org/10.1021/ar900141y

    Article  PubMed  Google Scholar 

  2. M. Grätzel, J. Photochem. Photobiol C Photochem Rev. (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  Google Scholar 

  3. Y. Li, J. Liu, D. Liu, X. Li, Y. Xu, Comput Mater Sci. (2019). https://doi.org/10.1016/j.commatsci.2019.01.033

    Article  Google Scholar 

  4. M. Megala, B.J.M. Rajkumar, J Comput Electron. (2018). https://doi.org/10.1007/s10825-018-1195-8

    Article  Google Scholar 

  5. B. Nagarajan, C.D. Athrey, R. Elumalai, S. Chandran, D. Raghavachari, Photochem Photobiol Chem. (2021). https://doi.org/10.1016/j.jphotochem.2020.112820

    Article  Google Scholar 

  6. A.R. Marri, H. Flint, E.A. Gibson, J. Fielden, Dyes and Pig. (2022). https://doi.org/10.1016/j.dyepig.2022.110244

    Article  Google Scholar 

  7. M. Lazrak, H. Toufik, S.M. Bouzzine, H. Bih, F. Lamchouri, RHAZES: G and App Chem. 2, 8 (2018)

    Google Scholar 

  8. P. Gnida, A. Slodek, P. Chulkin, M. Vasylieva, A.K. Pająk, A. Seweryn, M. Godlewski, B.S. Witkowski, G. Gorol, E.S. Balcerzak, Dyes and Pig. (2022). https://doi.org/10.1016/j.dyepig.2022.110166

    Article  Google Scholar 

  9. Z.-D. Sun, M. He, K. Chaitanya, X.-H. Ju, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122943

    Article  Google Scholar 

  10. A. Arunkumar, S. Shanavas, P.M. Anbarasan, J Comput Electron. (2018). https://doi.org/10.1007/s10825-018-1226-5

    Article  Google Scholar 

  11. J. Burschka, N. Pellet, S.J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M Gra¨tzel. Nature (2013). https://doi.org/10.1038/nature12340

    Article  PubMed  Google Scholar 

  12. M. Liu, M.B. Johnston, H.J. Snaith, Nature (2013). https://doi.org/10.1038/nature12509

    Article  PubMed  PubMed Central  Google Scholar 

  13. S.E. Mzioui, S.M. Bouzzine, İ Sidir, M. Bouachrine, M.N. Bennani, M. Bourass, M. Hamidi, J Mol Model. (2019). https://doi.org/10.1007/s00894-019-3963-1

    Article  PubMed  Google Scholar 

  14. H. Zhang, Z.E. Chen, J. Hu, Y. Hong, Dyes Pig. (2019). https://doi.org/10.1016/j.dyepig.2019.01.033

    Article  Google Scholar 

  15. D.M. Almenningen, H.E. Hansen, M.F. Vold, A.F. Buene, V. Venkatraman, S. Sunde, B.H. Hoff, O.R. Gautum, Dyes Pig (2021). https://doi.org/10.1016/j.dyepig.2020.108951

    Article  Google Scholar 

  16. R. Royo, A.D. Celorrio, S. Franco, R. Andreu, J. Orduna, Dyes and Pig. (2022). https://doi.org/10.1016/j.dypepig.2022.110566

    Article  Google Scholar 

  17. I. Duerto, S. Sarasa, D. Barrios, Jesús Orduna, B Villacampa, M J Blesa. Dyes Pigm. (2022). https://doi.org/10.1016/j.dyepig.2022.110310

    Article  Google Scholar 

  18. B. Xu, E. Sheibani, P. Liu, J. Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo, A. Hagfeldt, L. Sun, Adv Mater. (2014). https://doi.org/10.1002/adma.201402415

    Article  PubMed  PubMed Central  Google Scholar 

  19. P.J. Pacheco-Li, A. Navarro, J. Tolosa, M.́ oMoral, C. Martín, I.́ Bravo, J. Hofkens, J.C. García-Martínez, A G on-Ruiz. Dyes and Pig. (2022). https://doi.org/10.1016/j.dyepig.2022.110105

    Article  Google Scholar 

  20. C. Chen, J.Y. Liao, Z. Chi, B. Xu, X. Zhang, D.B. Kuang, Y. Zhang, S. Liu, Jiarui Xu. J Mater Chem. (2012). https://doi.org/10.1039/c2jm30254c

    Article  PubMed  PubMed Central  Google Scholar 

  21. K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga, H. Arakawa, Adv Funct Mater. (2005). https://doi.org/10.1002/adfm.200400272

    Article  Google Scholar 

  22. M. Liang, J. Chen, Chem Soc Rev. (2013). https://doi.org/10.1039/c3cs35372a

    Article  PubMed  Google Scholar 

  23. G. Dyrda, R. Słota, M.A. Broda, G. Mele, Res Chem Intermed. (2016). https://doi.org/10.1007/s11164-015-2245-5

    Article  Google Scholar 

  24. F. Zasada, J. Janas, W. Piskorz, Z. Sojka, Res. Chem. Intermed. (2017). https://doi.org/10.1007/s11164-016-2798-y

    Article  Google Scholar 

  25. S. Schinzel, M. Bindl, M. Visseaux, H. Chermette, J. Phys. Chem. A. (2006). https://doi.org/10.1021/jp060876d

    Article  PubMed  Google Scholar 

  26. M. Grätzel, Nature 414(6861), 338–344 (2001)

    Article  PubMed  Google Scholar 

  27. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. (2010). https://doi.org/10.1021/cr900356p

    Article  PubMed  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, B. Schlegelh, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Peterson, Gaussian IncWallingford CT 121, 150 (2009)

    Google Scholar 

  29. C. Negri, E. Borfecchia, A. Martini, G. Deplano, K.A. Lomachenko, T.V.W. Janssens, G. Berlier, S. Bordiga, Res Chem Intermed (2021). https://doi.org/10.1007/s11164-020-04350-1

    Article  Google Scholar 

  30. Z. Xu, Y. Li, W. Zhang, S. Yuan, L. Hao, T. Xu, X. Lu, Spectrochim Acta A Mol Biomol Spectrosc. (2019). https://doi.org/10.1016/j.saa.2019.01.002

    Article  PubMed  Google Scholar 

  31. R.H. Hertwig, W. Koch, Chem. Phys. Lett. (1997). https://doi.org/10.1016/S0009-2614(97)00207-8

    Article  Google Scholar 

  32. I. Althagafi, N.E. Metwaly, Arab. J. Chem. (2021). https://doi.org/10.1016/j.arabjc.2021.103080

    Article  Google Scholar 

  33. K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, J Chem Inf Model 47(3), 1045 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. B.P. Pritchard, D. Altarawy, B. Didier, T.D. Gibson, TLWindus. J Chem Inf Model 59(11), 4814 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys Rev Let. (1982). https://doi.org/10.1103/PhysRevLett.49.1691

    Article  Google Scholar 

  36. M. Lazrak, H. Toufik, S.M. Bouzzine, F. Lamchouri, Res. Chem. Intermed. (2020). https://doi.org/10.1007/s11164-020-04184-x

    Article  Google Scholar 

  37. I.M. Walton, J.M. Cox, C.A. Benson, D.G. Patel, Y.S. Chen, J.B. Benedict, New J Chem. (2016). https://doi.org/10.1039/C5NJ01718A

    Article  Google Scholar 

  38. N.A. Wazzan, J Comput Electron. (2019). https://doi.org/10.1007/s10825-019-01308-4

    Article  Google Scholar 

  39. E. Hosseinzadeh, N.L. Hadipour, G. Parsafar, J Photochem Photobiol Chem. (2017). https://doi.org/10.1016/j.jphotochem.2016.10.010

    Article  Google Scholar 

  40. A.D. Becke, J. Chem. Phys. (1993). https://doi.org/10.1063/1.464304

    Article  Google Scholar 

  41. Z.M.E. Fahim, S.M. Bouzzine, A.A. Youssef, M. Bouachrine, M. Hamidi, Comput Theor Chem. (2018). https://doi.org/10.1016/j.comptc.2018.01.002

    Article  Google Scholar 

  42. S.B. Novir, S.M. Hashemianzadeh, Spectrochim Acta A Mol Biomol Spectrosc. (2015). https://doi.org/10.1016/j.saa.2015.02.026

    Article  Google Scholar 

  43. M. Lazrak, H. Toufik, S. Ennehary, S.M. Bouzzine, F. Lamchouri, Orbital Elec J Chem. (2022). https://doi.org/10.17807/orbital.v14i1.1682

    Article  Google Scholar 

  44. M. Lakshmanakumar, S. Sriram, D. Balamurugan, J. Compu, Electron. (2018). https://doi.org/10.1007/s10825-018-1189-6

    Article  Google Scholar 

  45. A.N. Ossai, S.C. Ezike, P. Timtere, A.D. Ahmed, Chem Phys Impact. (2021). https://doi.org/10.1016/j.chphi.2021.100024

    Article  Google Scholar 

  46. A. Tripathi, A. Ganjoo, P Chetti (2020). https://doi.org/10.1016/j.solener.2020.08.084

    Article  Google Scholar 

  47. A.R. Obasuyi, D.G. Mitnik, N.F. Holguín, J Comput Electron. (2019). https://doi.org/10.1007/s10825-019-01331-5

    Article  Google Scholar 

  48. S. Mandal, G.R. Kandregula, K. Ramanujam, J Photochem Photobiol Chem. (2020). https://doi.org/10.1016/j.jphotochem.2020.112862

    Article  Google Scholar 

  49. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys Chem B. (2004). https://doi.org/10.1021/jp031260g

    Article  Google Scholar 

  50. C.R. Zhang, L. Liu, J.W. Zhe, N.Z. Jin, Y. Ma, L.H. Yuan, M.L. Zhang, Y.Z. Wu, Z.J. Liu, H S Chen Int J Mol Sci. (2013). https://doi.org/10.3390/ijms14035461

    Article  Google Scholar 

  51. A.B. Lovins, Energy Env Sci. (2009). https://doi.org/10.1039/B814525N

    Article  Google Scholar 

  52. L.J. He, J. Chen, F.Q. Bai, R. Jia, J. Wang, H.-X. Zhang, Dyes Pig. (2017). https://doi.org/10.1016/j.dyepig.2017.02.023

    Article  Google Scholar 

  53. H. Toufik, S.M. Bouzzine, O. Ninis, F. Lamchouri, M. Aberkane, M. Hamidi, M. Bouachrine, Res. Chem. Intermed. (2012). https://doi.org/10.1007/s11164-011-0469-6

    Article  Google Scholar 

  54. J. Xu, L. Zhu, D. Fang, B. Chen, L. Liu, L. Wang, W. Xu, Chem Phys Chem. (2012). https://doi.org/10.1002/cphc.201200273

    Article  PubMed  Google Scholar 

  55. L. Han, Y. Ke, X. Liu, S. Jiang, J Mol Struct. (2019). https://doi.org/10.1016/j.molstruc.2019.02.008

    Article  Google Scholar 

  56. G. Deogratias, O.S. Al-Qurashi, N. Wazzan, N. Seriani, T. Pogrebnaya, A Pogrebnoi Struct Chem. (2020). https://doi.org/10.1007/s11224-020-01596-8

    Article  Google Scholar 

  57. R.M. El-Shishtawy, A.M. Asiri, S.G. Aziz, S.A.K. Elroby, J Mol Model. (2014). https://doi.org/10.1007/s00894-014-2241-5

    Article  PubMed  Google Scholar 

  58. S. Ennehary, H. Toufik, S.M. Bouzzine, F. Lamchouri, J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01486-6

    Article  Google Scholar 

  59. M. Grätzel, Nature 414, 7 (2021)

    Google Scholar 

  60. V.T.T. Huong, T.B. Tai, M.T. Nguyen, J Phys Chem A. (2014). https://doi.org/10.1021/jp500899k

    Article  PubMed  Google Scholar 

  61. P.J. Hay, W.R. Wadt, J Chem Phys. (1985). https://doi.org/10.1063/1.448799

    Article  Google Scholar 

  62. N. Santhanamoorthi, C.M. Lo, J.C. Jiang, J Phys Chem Lett. (2013). https://doi.org/10.1021/jz302101j

    Article  PubMed  Google Scholar 

  63. P. Guo, R. Ma, L. Guo, L. Yang, J. Liu, X. Zhanga, X. Pan, S. Daib, J Mol Graph Model. (2010). https://doi.org/10.1016/j.jmgm.2010.10.002

    Article  PubMed  Google Scholar 

  64. P. Pounraj, V. Mohankumar, M.S. Pandian, P. Ramasamy, H H India. (2019). https://doi.org/10.1063/1.5113184

    Article  Google Scholar 

  65. A.B.E. Meligy, N. Koga, S. Iuchi, K. Yoshida, K. Hirao, A.H. Mangood, A.M.E. Nahas, J. Photochem. Photobiol. Chem. (2018). https://doi.org/10.1016/j.jphotochem.2018.08.036

    Article  Google Scholar 

  66. L.L. Estrella, M.P. Balanay, D.H. Kim, J Phys Chem. A. (2016). https://doi.org/10.1021/acs.jpca.6b03271

    Article  PubMed  Google Scholar 

  67. A. Mahmood, S.U.D. Khan, U.A. Rana, J Comput Electron. (2014). https://doi.org/10.1007/s10825-014-0628-2

    Article  Google Scholar 

  68. V.A. Chiykowski, B. Lam, C. Du, C.P. Berlinguette, Chem Commun. (2017). https://doi.org/10.1039/C6CC09178D

    Article  Google Scholar 

  69. M. Xu, M. Zhang, M. Pastore, R. Li, F. De Angelis, P. Wang, Chem Sci. (2012). https://doi.org/10.1039/c2sc00973k

    Article  PubMed  Google Scholar 

  70. M.M. Jadhav, T.H. Chowdhury, I. Bedja, D. Patil, A. Islam, N. Sekar, Dyes Pig. (2019). https://doi.org/10.1016/j.dyepig.2019.02.045

    Article  Google Scholar 

  71. M.M. Raikwar, D.S. Patil, E. Mathew, M. Varghese, I.H. Joe, N. Sekar, J Photochem Photobiol Chem. (2019). https://doi.org/10.1016/j.jphotochem.2018.12.035

    Article  Google Scholar 

  72. N.S.A. Fahdan, A.M. Asiri, A. Irfan, S.A. Basaif, R.M.E. Shishtawy, J Mol Model. (2014). https://doi.org/10.1007/s00894-014-2517-9

    Article  PubMed  Google Scholar 

  73. G. Deogratias, N. Seriani, T. Pogrebnaya, A. Pogrebnoi, J. Mol. Graph. Model. (2020). https://doi.org/10.1016/j.jmgm.2019.107480

    Article  PubMed  Google Scholar 

  74. H. Tian, X. Yang, J. Pan, R. Chen, M. Liu, Q. Zhang, A. Hagfedtl, L. Sun, Adv Funct Mater. (2008). https://doi.org/10.1002/adfm.200800516

    Article  Google Scholar 

  75. W. Sang-aroon, S. Saekow, V. Amornkitbamrung, J Photochem Photobiol Chem. (2012). https://doi.org/10.1016/j.jphotochem.2012.03.014

    Article  Google Scholar 

  76. S. Ennehary, H. Toufik, M. Lazrak, S.M. Bouzzine, F. Lamchouri, J Mol Model. (2021). https://doi.org/10.1007/s00894-021-04733-0

    Article  PubMed  Google Scholar 

  77. J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.C. Ha, C. Yi, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. (2011). https://doi.org/10.1021/ja207367t

    Article  PubMed  Google Scholar 

  78. J.M. Juma, S.A. Vuai, J Chem Res. (2021). https://doi.org/10.1177/1747519821994518

    Article  Google Scholar 

  79. R.S. Rojo, J.B. López, D.G. Mitnik, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/C5CP01387A

    Article  PubMed  Google Scholar 

  80. P.K. Chattaraj, B. Maiti, J. Am. Chem. Soc. (2003). https://doi.org/10.1021/ja0276063

    Article  PubMed  Google Scholar 

  81. R.G. Pearson, J Chem Sci. (2005). https://doi.org/10.1007/BF02708340

    Article  Google Scholar 

  82. S. Liu, J Chem Sci. (2005). https://doi.org/10.1007/BF02708352

    Article  Google Scholar 

  83. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. (1983). https://doi.org/10.1021/ja00364a005

    Article  Google Scholar 

  84. O. Osman, Int J Mol Sci. (2017). https://doi.org/10.3390/ijms18020239

    Article  PubMed  PubMed Central  Google Scholar 

  85. B. Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  86. Y. Wang, D.J. Doren, Sol. State Com. (2005). https://doi.org/10.1016/j.ssc.2005.05.042

    Article  Google Scholar 

  87. M.B. Manaa, N. Issaoui, N. Bouaziz, A.B. Lamine, J. of Materials Res. and Tech (2020). https://doi.org/10.1016/j.jmrt.2019.11.045

    Article  Google Scholar 

  88. A. Irfan, Computat. and Theore. Chem. (2019). https://doi.org/10.1016/j.comptc.2019.04.008

    Article  Google Scholar 

  89. J.K. Roy, S. Kar, J. Leszczynski, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-29368-9

    Article  PubMed  PubMed Central  Google Scholar 

  90. M. Pastore, F. De Angelis, ACS Nano (2009). https://doi.org/10.1021/nn901518s

    Article  Google Scholar 

  91. P. Chen, J.H. Yum, F. De Angelis, E. Mosconi, S. Fantacci, S.J. Moon, R.H. Baker, J. Ko, M.K. Nazeeruddin, M. Gratzel, Nano Lett. (2009). https://doi.org/10.1021/nl901246g

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SE did most of the practical work as part of a PhD thesis supervised by HT and prepared the manuscript. HT designed and coordinated the study, participated in article preparation, corrected the manuscript and edited the final version and submitted it for publication. SiMB participated in study designed, helped to improve the manuscript and critically revised the manuscript. ML contributed to data analysis. FL participated in study designed, helped to improve the manuscript and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamid Toufik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethics approval and consent to participate Compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ennehary, S., Toufik, H., Bouzzine, S.M. et al. Theoretical investigation for dye-sensitized solar cells: effect of donor variation on the optoelectronic properties and charge transfer parameters. Res Chem Intermed 49, 1731–1754 (2023). https://doi.org/10.1007/s11164-023-04971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04971-2

Keywords

Navigation