Skip to main content

Advertisement

Log in

Investigation of optoelectronic properties of triphenylamine-based dyes featuring heterocyclic anchoring groups for DSSCs’ applications: a theoretical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Design and synthesis of new potent sensitizers are of interest for realization of high-efficiency Dye Sensitized Solar Cells (DSSCs). Modification of the triphenylamine-based dyes by introducing suitable anchoring groups aimed at improvement of optoelectronic properties is attempted in our work. The molecular structure, molecular orbitals and energies, electronic absorption spectra, free energies of electron injection and dye regeneration, chemical reactivity parameters and adsorption to TiO2 semiconductor have been reported. Density functional theory (DFT) and time-dependent DFT (TD-DFT) were used to obtain the reported properties. The results reveal superior optical, electronic properties, chemical reactivity parameters and adsorption energies for the investigated dyes. The findings evince that the dyes featuring heterocyclic anchoring groups could be potential candidates for DSSCs’ applications; the new materials are worthy of being investigated experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sust Energ Rev 68:234–246. https://doi.org/10.1016/j.rser.2016.09.097

    Article  CAS  Google Scholar 

  2. Jung HS, Lee J-K (2013) Dye sensitized solar cells for economically viable photovoltaic systems. J Phys Chem Lett 4(10):1682–1693. https://doi.org/10.1021/jz400112n

    Article  CAS  PubMed  Google Scholar 

  3. Hug H, Bader M, Mair P, Glatzel T (2014) Biophotovoltaics: natural pigments in dye-sensitized solar cells. Appl Energy 115:216–225. https://doi.org/10.1016/j.apenergy.2013.10.055

    Article  CAS  Google Scholar 

  4. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740. https://doi.org/10.1038/353737a0

    Article  CAS  Google Scholar 

  5. Kakiage K, Aoyama Y, Yano T, Oya K, J-i F, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897. https://doi.org/10.1039/C5CC06759F

    Article  CAS  Google Scholar 

  6. Ahmad MS, Pandey AK, Rahim NA (2017) Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew Sust Energ Rev 77:89–108. https://doi.org/10.1016/j.rser.2017.03.129

    Article  CAS  Google Scholar 

  7. Han L, Meng X, Ye H, Cui Y (2019) Novel D-π-A benzocarbazole dyes with simple structures for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 376:127–134. https://doi.org/10.1016/j.jphotochem.2019.03.015

    Article  CAS  Google Scholar 

  8. Chen C, Yang X, Cheng M, Zhang F, Sun L (2013) Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. ChemSusChem 6(7):1270–1275. https://doi.org/10.1002/cssc.201200949

    Article  CAS  PubMed  Google Scholar 

  9. Baik C, Kim D, Kang M-S, Kang SO, Ko J, Nazeeruddin MK, Grätzel M (2009) Organic dyes with a novel anchoring group for dye-sensitized solar cell applications. J Photochem Photobiol A Chem 201(2–3):168–174. https://doi.org/10.1016/j.jphotochem.2008.10.018

    Article  CAS  Google Scholar 

  10. Murakami TN, Yoshida E, Koumura N (2014) Carbazole dye with phosphonic acid anchoring groups for long-term heat stability of dye-sensitized solar cells. Electrochim Acta 131:174–183. https://doi.org/10.1016/j.electacta.2013.12.013

    Article  CAS  Google Scholar 

  11. Jia H-L, Peng Z-J, Gong B-Q, Huang C-Y, Guan M-Y (2019) New 2D–π–2A organic dyes with bipyridine anchoring groups for DSSCs. New J Chem 43(15):5820–5825. https://doi.org/10.1039/C9NJ00087A

    Article  CAS  Google Scholar 

  12. Deogratias G, Seriani N, Pogrebnaya T, Pogrebnoi A (2020) Tuning optoelectronic properties of triphenylamine based dyes through variation of pi-conjugated units and anchoring groups: a DFT/TD-DFT investigation. J Mol Graph Model 94:107480. https://doi.org/10.1016/j.jmgm.2019.107480

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Zhu H-C, Zhong R-L, Wang L, Su Z-M (2018) Promising heterocyclic anchoring groups with superior adsorption stability and improved IPCE for high-efficiency noncarboxyl dye sensitized solar cells: a theoretical study. Org Electron 54:104–113. https://doi.org/10.1016/j.orgel.2017.12.023

    Article  CAS  Google Scholar 

  14. Hagberg DP, Marinado T, Karlsson KM, Nonomura K, Qin P, Boschloo G, Brinck T, Hagfeldt A, Sun L (2007) Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J Org Chem 72(25):9550–9556. https://doi.org/10.1021/jo701592x

    Article  CAS  PubMed  Google Scholar 

  15. Xu M, Zhang M, Pastore M, Li R, De Angelis F, Wang P (2012) Joint electrical, photophysical and computational studies on D-π-A dye sensitized solar cells: the impacts of dithiophene rigidification. Chem Sci 3(4):976–983. https://doi.org/10.1039/C2SC00973K

    Article  CAS  Google Scholar 

  16. Chen S, Pei J, Pang Z, Wu W, Yu X, Zhang C (2020) Axial-symmetric conjugated group promoting intramolecular charge transfer performances of triphenylamine sensitizers for dye-sensitized solar cells. Dyes Pigments 174:108029. https://doi.org/10.1016/j.dyepig.2019.108029

    Article  CAS  Google Scholar 

  17. Guo FL, Li ZQ, Liu XP, Zhou L, Kong FT, Chen WC, Dai SY (2016) Metal-free sensitizers containing hydantoin acceptor as high performance anchoring group for dye-sensitized solar cells. Adv Funct Mater 26(31):5733–5740. https://doi.org/10.1002/adfm.201601305

    Article  CAS  Google Scholar 

  18. Chen M, Wang G-C, Yang W-Q, Yuan Z-Y, Qian X, Xu J-Q, Huang Z-Y, Ding A-X (2019) Enhanced synergetic catalytic effect of Mo2C/NCNTs@ Co heterostructures in dye-sensitized solar cells: fine-tuned energy level alignment and efficient charge transfer behavior. ACS Appl Mater Interfaces 11(45):42156–42171. https://doi.org/10.1021/acsami.9b14316

    Article  CAS  PubMed  Google Scholar 

  19. Rangan S, Katalinic S, Thorpe R, Bartynski RA, Rochford J, Galoppini E (2010) Energy level alignment of a zinc (II) tetraphenylporphyrin dye adsorbed onto TiO2 (110) and ZnO (1120) surfaces. J Phys Chem C 114(2):1139–1147. https://doi.org/10.1021/jp909320f

    Article  CAS  Google Scholar 

  20. Kesavan R, Attia F, Su R, Anees P, El-Shafei A, Adhikari AV (2019) Asymmetric dual anchoring sensitizers/cosensitizers for dye sensitized solar cell application: an insight into various fundamental processes inside the cell. J Phys Chem C 123(40):24383–24395. https://doi.org/10.1021/acs.jpcc.9b06525

    Article  CAS  Google Scholar 

  21. Zhu H-C, Li C-F, Fu Z-H, Wei S-S, Zhu X-F, Zhang J (2018) Increasing the open-circuit voltage and adsorption stability of squaraine dye binding onto the TiO2 anatase (1 0 1) surface via heterocyclic anchoring groups used for DSSC. Appl Surf Sci 455:1095–1105. https://doi.org/10.1016/j.apsusc.2018.06.081

    Article  CAS  Google Scholar 

  22. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4(1):17. https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  Google Scholar 

  23. Becke AD (1996) Density-functional thermochemistry. IV A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys 104(3):1040–1046. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  24. Granovsky AA (n.d.) Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  26. Irfan A (2019) Comparison of mono-and di-substituted triphenylamine and carbazole based sensitizers@(TiO2)38 cluster for dye-sensitized solar cells applications. Comput Theor Chem 1159:1–6. https://doi.org/10.1016/j.comptc.2019.04.008

    Article  CAS  Google Scholar 

  27. Quarti C, Villafiorita-Monteoleone F, Botta C, Daita V, Perdicchia D, Del Buttero P, Del Zoppo M (2014) A spectroscopic study of the optical properties of a nitrobenzoxadiazole derivative in solution: the role of specific interactions. Chem Phys Lett 610:357–362. https://doi.org/10.1016/j.cplett.2014.07.042

    Article  CAS  Google Scholar 

  28. Neese F (2008) ORCA-an ab initio density functional, and semiempirical program package, version 2.7. University of Bonn

  29. Neese F (2018) Software update: the ORCA program system, version 4.0. Wiley Interdiscip Rev Comput Mol Sci 8(1):e1327. https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  31. Arkan F, Izadyar M (2018) Recent theoretical progress in the organic/metal-organic sensitizers as the free dyes, dye/TiO2 and dye/electrolyte systems; structural modifications and solvent effects on their performance. Renew Sust Energ Rev 94:609–655. https://doi.org/10.1016/j.rser.2018.06.054

    Article  CAS  Google Scholar 

  32. Pastore M, De Angelis F (2013) Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency. Multiscale modelling of organic and hybrid photovoltaics. Springer, pp 151–236. https://doi.org/10.1007/128_2013_468

  33. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  34. Deskins NA, Dupuis M (2007) Electron transport via polaron hopping in bulk Ti O 2: a density functional theory characterization. Phys Rev B 75(19):195212

    Article  Google Scholar 

  35. Roy JK, Kar S, Leszczynski J (2018) Insight into the optoelectronic properties of designed solar cells efficient tetrahydroquinoline dye-sensitizers on TiO 2 (101) surface: first principles approach. Sci Rep 8(1):1–12

    Article  Google Scholar 

  36. Jedidi A, Markovits A, Minot C, Bouzriba S, Abderraba M (2010) Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+ U methodology. Langmuir 26(21):16232–16238

    Article  CAS  Google Scholar 

  37. Arroyo-de Dompablo M, Morales-García A, Taravillo M (2011) DFT+ U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. J Chem Phys 135(5):054503

    Article  CAS  Google Scholar 

  38. Saranya G, Yam C, Gao S, Chen M (2018) Roles of chenodeoxycholic acid coadsorbent in anthracene-based dye-sensitized solar cells: a density functional theory study. J Phys Chem C 122(41):23280–23287

    Article  CAS  Google Scholar 

  39. Liu Q-L, Zhao Z-Y, Liu Q-J (2014) Analysis of sulfur modification mechanism for anatase and rutile TiO2 by different doping modes based on GGA+ U calculations. RSC Adv 4(61):32100–32107. https://doi.org/10.1039/C4RA03891F

    Article  CAS  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  41. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. https://doi.org/10.1016/0927-0256(96)00008-0

  42. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251. https://doi.org/10.1103/PhysRevB.49.14251

  43. Liu H, Liu L, Fu Y, Liu E, Xue B (2019) Theoretical Design of D− π–A–A sensitizers with narrow band gap and broad spectral response based on boron dipyrromethene for dye-sensitized solar cells. J Chem Inf Model 59(5):2248–2256. https://doi.org/10.1021/acs.jcim.9b00187

    Article  CAS  PubMed  Google Scholar 

  44. Li P, Cui Y, Song C, Zhang H (2017) A systematic study of phenoxazine-based organic sensitizers for solar cells. Dyes Pigments 137:12–23. https://doi.org/10.1016/j.dyepig.2016.09.060

    Article  CAS  Google Scholar 

  45. J-i F, Eda T, Hanaya M (2017) Comparative study of conduction-band and valence-band edges of TiO2, SrTiO3, and BaTiO3 by ionization potential measurements. Chem Phys Lett 685:23–26. https://doi.org/10.1016/j.cplett.2017.07.031

    Article  CAS  Google Scholar 

  46. Preat J, Hagfeldt A, Perpète EA (2011) Investigation of the photoinduced electron injection processes for p-type triphenylamine-sensitized solar cells. Energy Environ Sci 4(11):4537–4549. https://doi.org/10.1039/C1EE01638E

    Article  CAS  Google Scholar 

  47. Zanjanchi F, Beheshtian J (2019) Natural pigments in dye-sensitized solar cell (DSSC): a DFT-TDDFT study. J Iran Chem Soc 16(4):795–805. https://doi.org/10.1007/s13738-018-1561-2

    Article  CAS  Google Scholar 

  48. Wei S, Li K, Lu X, Zhao Z, Shao Y, Dang Y, Li S, Guo W (2016) Theoretical insight into electronic structure and optoelectronic properties of heteroleptic Cu (I)-based complexes for dye-sensitized solar cells. Mater Chem Phys 173:139–145. https://doi.org/10.1016/j.matchemphys.2016.01.049

    Article  CAS  Google Scholar 

  49. Tripathi A, Prabhakar C (2018) Impact of replacement of the central benzene ring in anthracene by a heterocyclic ring on electronic excitations and reorganization energies in anthratetrathiophene molecules. J Chin Chem Soc 65(8):918–924. https://doi.org/10.1002/jccs.201700448

    Article  CAS  Google Scholar 

  50. Siddiqui SA (2019) In silico investigation of the coumarin-based organic semiconductors for the possible use in organic electronic devices. J Phys Org Chem 32(3):e3905. https://doi.org/10.1002/poc.3905

    Article  CAS  Google Scholar 

  51. Tripathi A, Chetti P (2020) Enhanced charge transport properties in heteroatomic (NH, O, Se) analogs of benzotrithiophene (BTT) isomers: a DFT insight. Mol Simul 46(7):548–556. https://doi.org/10.1080/08927022.2020.1738425

    Article  CAS  Google Scholar 

  52. Zhang M, Hua Z, Liu W, Liu H, He S, Zhu C, Zhu Y (2020) A DFT study on the photoelectric properties of rubrene and its derivatives. J Mol Model 26(2):32. https://doi.org/10.1007/s00894-020-4295-x

    Article  CAS  PubMed  Google Scholar 

  53. Fahim ZME, Bouzzine SM, Aicha YA, Bouachrine M, Hamidi M (2018) The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study. Res Chem Intermed 44(3):2009–2023. https://doi.org/10.1007/s11164-017-3211-1

    Article  CAS  Google Scholar 

  54. He L-J, Wei W, Chen J, Jia R, Wang J, Zhang H-X (2017) The effect of D–[D e–π–A] n (n= 1, 2, 3) type dyes on the overall performance of DSSCs: a theoretical investigation. J Mater Chem C 5(30):7510–7520. https://doi.org/10.1039/C7TC02499A

    Article  CAS  Google Scholar 

  55. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20(1):129–154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A

    Article  CAS  Google Scholar 

  56. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111(10):1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  57. Moia D, Vaissier V, López-Duarte I, Torres T, Nazeeruddin MK, O'Regan BC, Nelson J, Barnes PR (2014) The reorganization energy of intermolecular hole hopping between dyes anchored to surfaces. Chem Sci 5(1):281–290. https://doi.org/10.1039/c3sc52359d

    Article  CAS  Google Scholar 

  58. Vaissier V, Barnes P, Kirkpatrick J, Nelson J (2013) Influence of polar medium on the reorganization energy of charge transfer between dyes in a dye sensitized film. Phys Chem Chem Phys 15(13):4804–4814. https://doi.org/10.1039/C3CP44562C

    Article  CAS  PubMed  Google Scholar 

  59. Haque SA, Tachibana Y, Willis RL, Moser JE, Grätzel M, Klug DR, Durrant JR (2000) Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem B 104(3):538–547. https://doi.org/10.1021/jp991085x

    Article  CAS  Google Scholar 

  60. Balanay MP, Kim DH (2009) Structures and excitation energies of Zn–tetraarylporphyrin analogues: a theoretical study. J Mol Struct THEOCHEM 910(1–3):20–26. https://doi.org/10.1016/j.theochem.2009.06.010

    Article  CAS  Google Scholar 

  61. Lin BC, Cheng CP, You Z-Q, Hsu C-P (2005) Charge transport properties of tris (8-hydroxyquinolinato) aluminum (III): why it is an electron transporter. J Am Chem Soc 127(1):66–67. https://doi.org/10.1021/ja045087t

    Article  CAS  PubMed  Google Scholar 

  62. Al-Qurashi OS, Wazzan NA, Obot I (2020) Exploring the effect of mono-and di-fluorinated triphenylamine-based molecules as electron donors for dye-sensitised solar cells. Mol Simul 46(1):41–53. https://doi.org/10.1080/08927022.2019.1668561

    Article  CAS  Google Scholar 

  63. Chen P, Yum JH, Angelis FD, Mosconi E, Fantacci S, Moon S-J, Baker RH, Ko J, Nazeeruddin MK, Grätzel M (2009) High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett 9(6):2487–2492. https://doi.org/10.1021/nl901246g

    Article  CAS  PubMed  Google Scholar 

  64. Pastore M, De Angelis F (2010) Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation. ACS Nano 4(1):556–562. https://doi.org/10.1021/nn901518s

    Article  CAS  PubMed  Google Scholar 

  65. Ambrosio F, Martsinovich N, Troisi A (2012) What is the best anchoring group for a dye in a dye-sensitized solar cell? J Phys Chem Lett 3(11):1531–1535. https://doi.org/10.1021/jz300520p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

O. Al-Qurashi and N. Wazzan acknowledge King Abdulaziz University’s High-Performance Computing Centre (Aziz Supercomputer) (http://hpc.kau.edu.sa) for supporting the computation for the work described in this paper.

Availability of data and material

Materials will be available on request.

Funding

G. Deogratias received financial support from the African Development Bank (AfDB), United Republic of Tanzania through project number P-Z1-IA0-016 and grant number 2100155032816.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geradius Deogratias or Nuha Wazzan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deogratias, G., Al-Qurashi, O.S., Wazzan, N. et al. Investigation of optoelectronic properties of triphenylamine-based dyes featuring heterocyclic anchoring groups for DSSCs’ applications: a theoretical study. Struct Chem 31, 2451–2461 (2020). https://doi.org/10.1007/s11224-020-01596-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01596-8

Keywords

Navigation