Skip to main content
Log in

Evaluation of modern DFT functionals and G3n-RAD composite methods in the modelization of organic singlet diradicals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The evaluation of four high-level composite methods based on the modification of Gaussian-3 (G3) theory for radicals and 18 exchange-correlation density functionals, including modern long-range and dispersion-corrected functionals, in the modelization of singlet diradicals has been performed in this work. Structural parameters and properties such as singlet-triplet gaps, electron affinities, ionization potentials, dipole moments, enthalpies of formation, and bond dissociation energies have been calculated in a set of six well-characterized singlet diradicals, and benchmarked against experimental data and wavefunction-based CASSCF/CASPT2 calculations. The complexity of the open-shell singlet ground state is revealed in the difficulties to properly represent the diradical character reported by some DFT functionals, specially those that do not comprise a certain amount of Hartree-Fock exchange in their formulation. We find that STGs, EAs, dipole moments, and thermochemical properties are, in general, satisfactorily calculated, while for IPs larger deviations with respect to the experiments are found in all cases. The best overall performance is accounted for by hybrid functionals, including some of the long-range corrected functionals, but also pure functionals, comprising the kinetic energy density in their formulation, are found to be competent. Composite methods perform satisfactorily, especially G3(MP2)-RAD and G3X(MP2)-RAD, which calculate singlet-triplet gaps and electron affinities more accurately. On the other hand, G3-RAD and G3X-RAD provide better ionization potentials. This study emphasizes that the use of recently developed functionals, within the broken symmetry approximation, is an appropriate tool for the simulation of organic singlet diradicals, with similar accuracy compared to more expensive composite methods. Nevertheless, suitable selection of the methodology is still crucial for the accomplishment of accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borden WT (1982) Diradicals. Wiley-Interscience, New York

    Google Scholar 

  2. Salem L, Rowland C (1972) Angew Chem Int Ed Engl 11:92

    Article  CAS  Google Scholar 

  3. Hicks RG (2010) Stable radicals – fundamentals and applied aspects of Odd-electron compounds. Wiley, Chichester

    Book  Google Scholar 

  4. Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2010) Chem Phys Lett 489:212

    Article  CAS  Google Scholar 

  5. Ito S, Minami T, Nakano M (2012) J Phys Chem C 116:19729

    Article  CAS  Google Scholar 

  6. Lambert C (2011) Angew Chem Int Ed 50:1756

    Article  CAS  Google Scholar 

  7. Sun Z, Wu J (2012) J Mater Chem 22:4151

    Article  CAS  Google Scholar 

  8. Di Motta S, Negri F, Fazzi D, Castiglioni C, Canesi V (2010) J Phys Chem Lett 1:3334

    Article  CAS  Google Scholar 

  9. Ponce-Ortiz R, Casado J, Rodríguez-González S, Hernández V, López-Navarrete JT, Viruela PM, Ortí E, Takimiya K, Otsubo T (2010) Chem Eur J 16:470

    Article  CAS  Google Scholar 

  10. Boratyński PJ, Pink M, Rajca S, Rajca A (2010) Angew Chem Int Ed 49:5459

    Article  CAS  Google Scholar 

  11. Trinquier G, Suaud N, Malrieu JP (2010) Chem Eur J 16:8762

    Article  CAS  Google Scholar 

  12. Paci I, Johnson JC, Chen X, Rana G, Popovic D, David DE, Nozik AJ, Ratner MA, Michl J (2006) J Am Chem Soc 128:16546

    Article  CAS  Google Scholar 

  13. Smith MB, Michl J (2010) Chem Rev 110:6891

    Article  CAS  Google Scholar 

  14. Minami T, Nakano M (2012) J Phys Chem Lett 3:145

    Article  CAS  Google Scholar 

  15. Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482

    Article  CAS  Google Scholar 

  16. Tian Y-H, Kertesz M (2010) J Am Chem Soc 132:10648

    Article  CAS  Google Scholar 

  17. Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Nakano M (2007) Angew Chem Int Ed 46:3544

    Article  CAS  Google Scholar 

  18. Dougherty DA (1990) In: Platz MS (ed) Kinetics and spectroscopy of carbenes and biradicals. Plenum, New York, p 117

    Chapter  Google Scholar 

  19. Lineberger WC, Borden WT (2011) Phys Chem Chem Phys 13:11792

    Article  CAS  Google Scholar 

  20. Illas F, Moreira IPR, Bofill JM, Filatov M (2004) Phys Rev B 70:132414

    Article  CAS  Google Scholar 

  21. Krylov AI (2001) Chem Phys Lett 338:375

    Article  CAS  Google Scholar 

  22. Krylov AI (2001) Chem Phys Lett 350:522

    Article  CAS  Google Scholar 

  23. Krylov AI, Sherrill CD (2002) J Chem Phys 116:3194

    Article  CAS  Google Scholar 

  24. Slipchenko LV, Krylov AI (2002) J Chem Phys 117:4694

    Article  CAS  Google Scholar 

  25. Gilbert TL (1975) Phys Rev B 12:2111

    Article  Google Scholar 

  26. Levy M (1979) Proc Natl Acad Sci U S A 76:6062

    Article  CAS  Google Scholar 

  27. Valone SM (1980) J Chem Phys 73:1344

    Article  Google Scholar 

  28. Piris M, Ugalde JM (2014) Int J Quantum Chem 114:1169

    Article  CAS  Google Scholar 

  29. Lopez X, Ruipérez F, Piris M, Matxain JM, Ugalde JM (2011) ChemPhysChem 12:1061

    Article  CAS  Google Scholar 

  30. Lopez X, Piris M, Matxain JM, Ruipérez F, Ugalde JM (2011) ChemPhysChem 12:1673

    Article  CAS  Google Scholar 

  31. Noodleman L (1981) J Chem Phys 74:5737

    Article  CAS  Google Scholar 

  32. Noodleman L, Baerends EJ (1984) J Am Chem Soc 106:2316

    Article  CAS  Google Scholar 

  33. Noodleman L, Davidson ER (1986) J Chem Phys 109:131

    Google Scholar 

  34. Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) J Chem Phys 90:5622

    Article  CAS  Google Scholar 

  35. Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) J Chem Phys 93:2537

    Article  CAS  Google Scholar 

  36. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221

    Article  CAS  Google Scholar 

  37. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764

    Article  CAS  Google Scholar 

  38. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108

    Article  CAS  Google Scholar 

  39. Henry DJ, Sullivan MB, Radom L (2003) J Chem Phys 118:4849

    Article  CAS  Google Scholar 

  40. Hemelsoet K, Moran D, Van Speybroeck V, Waroquier M, Radom L (2006) J Phys Chem A 110:8942

    Article  CAS  Google Scholar 

  41. Henry DJ, Parkinson CJ, Radom L (2002) J Phys Chem A 106:7927

    Article  CAS  Google Scholar 

  42. Reta-Mañeru D, Pal AK, Moreira IPR, Datta SN, Illas F (2014) J Chem Theory Comput 10:335

    Article  CAS  Google Scholar 

  43. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Theor Chem Accounts 130:739

    Article  CAS  Google Scholar 

  44. Nakamura T, Gagliardi L, Abe M (2010) J Phys Org Chem 23:300

    CAS  Google Scholar 

  45. Abe M, Ishihara C, Nojima M (2003) J Org Chem 68:1618

    Article  CAS  Google Scholar 

  46. Cramer CJ (1998) J Am Chem Soc 120:6261

    Article  CAS  Google Scholar 

  47. Cramer CJ, Nash JJ, Squires RR (1997) Chem Phys Lett 277:311

    Article  CAS  Google Scholar 

  48. Li X, Paldus J (2008) J Theor Comput Chem 7:805

    Article  CAS  Google Scholar 

  49. Squires RR, Cramer CJ (1998) J Phys Chem A 102:9072

    Article  CAS  Google Scholar 

  50. Casado J, Ponce-Ortiz R, López-Navarrete JT (2012) Chem Soc Rev 41:5672

    Article  CAS  Google Scholar 

  51. Qiu Y-Q, Wang W-Y, Ma N-N, Wang C-H, Zhang M-Y, Zou H-Y, Liu P-J (2013) J Mol Model 19:5479

    Article  CAS  Google Scholar 

  52. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416

    Article  CAS  Google Scholar 

  53. Motomura S, Nakano M, Fukui H, Yoneda K, Kubo T, Carion R, Champagne B (2011) Phys Chem Chem Phys 13:20575

    Article  CAS  Google Scholar 

  54. Sun Z, Zeng Z, Wu J (2014) Acc Chem Res 47:2582

    Article  CAS  Google Scholar 

  55. Yang H, Song Q, Li W, Song X, Bu Y (2012) J Phys Chem C 116:5900

    Article  CAS  Google Scholar 

  56. Snyder GJ (2012) J Phys Chem A 116:5272

    Article  CAS  Google Scholar 

  57. Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T (2013) J Am Chem Soc 135:1430

    Article  CAS  Google Scholar 

  58. Sun Z, Huang K-W, Wu J (2011) J Am Chem Soc 133:11896

    Article  CAS  Google Scholar 

  59. Romanova J, Liégeois V, Champagne B (2014) Phys Chem Chem Phys 16:21721

    Article  CAS  Google Scholar 

  60. Minami T, Nakano M (2013) J Phys Chem A 117:2000

    Article  CAS  Google Scholar 

  61. Abe M (2013) Chem Rev 113:7011

    Article  CAS  Google Scholar 

  62. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford

  63. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  64. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  65. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  66. Peverati R, Truhlar DG (2012) J Chem Theory Comput 8:2310

    Article  CAS  Google Scholar 

  67. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117

    Article  CAS  Google Scholar 

  68. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  CAS  Google Scholar 

  69. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:13171

    Article  CAS  Google Scholar 

  70. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  71. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  72. Perdew JP (1991) In: Ziesche P, Eschig H (eds) Electronic structure of solids’91. Akademie Verlag, Berlin, pp 11–20

    Google Scholar 

  73. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York, pp 81–121

  74. Peverati R, Truhlar DG (2011) J Chem Phys 135:191102

    Article  CAS  Google Scholar 

  75. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215

    Article  CAS  Google Scholar 

  76. Zhao Y, Truhlar DG (2006) J Phys Chem 110:13126

    Article  CAS  Google Scholar 

  77. Vydrov OA, Heyd J, Krukau A, Scuseria GE (2006) J Chem Phys 125:074106

    Article  CAS  Google Scholar 

  78. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810

    Article  CAS  Google Scholar 

  79. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  CAS  Google Scholar 

  80. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  81. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  82. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  83. Peverati R, Truhlar DG (2012) Phys Chem Chem Phys 14:16187

    Article  CAS  Google Scholar 

  84. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  85. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  86. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  87. Siegbahn PEM, Heiberg A, Almlöf J, Roos BO (1981) J Chem Phys 74:2384

    Article  CAS  Google Scholar 

  88. Siegbahn PEM, Heiberg A, Roos BO, Levy B (1980) Phys Scr 21:323

    Article  CAS  Google Scholar 

  89. Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483

    Article  CAS  Google Scholar 

  90. Andersson K, Malmqvist P-Å, Roos BO (1992) J Chem Phys 96:1218

    Article  CAS  Google Scholar 

  91. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224

    Article  CAS  Google Scholar 

  92. Yamaguchi K, Takahara Y, Fueno T, Nasu K (1987) Jpn J Appl Phys 26:L1362

    Article  CAS  Google Scholar 

  93. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537

    Article  CAS  Google Scholar 

  94. Herebian B, Wieghardt KE, Neese F (2003) J Am Chem Soc 125:10997

    Article  CAS  Google Scholar 

  95. Mozhayskiy V, Goebbert DJ, Velarde L, Sanov A, Krylov AI (2010) J Phys Chem A 114:6935

    Article  CAS  Google Scholar 

  96. Šimsa D, Demel O, Bhaskaran-Nair K, Hubač I, Mach P, Pittner J (2012) Chem Phys 401:203

    Article  CAS  Google Scholar 

  97. Schalley CA, Blanksby S, Harvey JN, Schröder D, Zummack W, Bowie JH, Schwarz H (1998) Eur J Org Chem 1998:987

    Article  Google Scholar 

  98. Ichino T, Villano SM, Gianola AJ, Goebbert DJ, Velarde L, Sanov A, Blanksby SJ, Zhou X, Hrovat DA, Borden WT, Lineberger WC (2011) J Phys Chem A 115:1634

    Article  CAS  Google Scholar 

  99. Vanovschi V, Krylov AI, Wenthold PG (2008) Theor Chem Accounts 120:45

    Article  CAS  Google Scholar 

  100. Li H, Huang M (2008) Phys Chem Chem Phys 10:5381

    Article  CAS  Google Scholar 

  101. Sander W, Exner M, Winkler M, Balster A (2002) J Am Chem Soc 124:13072

    Article  CAS  Google Scholar 

  102. Wenthold PG, Hu J, Squires RR (1996) J Am Chem Soc 118:11865

    Article  CAS  Google Scholar 

  103. Nash JJ, Squires RR (1996) J Am Chem Soc 118:11872

    Article  CAS  Google Scholar 

  104. Wenthold PG, Squires RR, Lineberger WC (1998) J Am Chem Soc 120:5279

    Article  CAS  Google Scholar 

  105. Perera A, Molt TW Jr, Lotrich VF, Bartlett RJ (2014) Theor Chem Accounts 133:1514

    Article  CAS  Google Scholar 

  106. Debbert SL, Cramer CJ (2000) Int J Mass Spectrom 201:1

    Article  CAS  Google Scholar 

  107. Chattopadhyay S, Chaudhuri RK, Freed KF (2011) Phys Chem Chem Phys 13:7514

    Article  CAS  Google Scholar 

  108. Nam HH, Leroi GE, Harrison JF (1991) J Phys Chem 95:6514

    Article  CAS  Google Scholar 

  109. Cramer CJ, Debbert SL (1998) Chem Phys Lett 287:320

    Article  CAS  Google Scholar 

  110. Kraka E, Cremer D (1994) J Am Chem Soc 116:4929

    Article  CAS  Google Scholar 

  111. Kraka E, Cremer D, Bucher G, Wandel H, Sander W (1997) Chem Phys Lett 268:313

    Article  CAS  Google Scholar 

  112. Öpik U, Pryce MLH (1957) Proc Roy Soc London A238:425

    Article  Google Scholar 

  113. Bersuker IB (1984) The Jahn-teller effect and vibronic interactions in modern chemistry. Plenum, New York

  114. Borden WT, Davidson ER, Feller D (1982) Tetrahedron 38:737

    Article  CAS  Google Scholar 

  115. Hrovat DA, Hou GL, Wang XB, Borden WT (2013) J Am Chem Soc 137:9094

    Article  CAS  Google Scholar 

  116. Cramer CJ, Squires RR (1997) J Am Chem Soc 101:9191

    CAS  Google Scholar 

  117. Tozer DJ, de Proft F (2005) J Phys Chem A 109:8923

    Article  CAS  Google Scholar 

  118. Izgorodina EI, Brittain DRB, Hodgson JL, Krenske EH, Lin CY, Namazian M, Coote ML (2007) J Phys Chem A 111:10754

    Article  CAS  Google Scholar 

  119. Grützmacher HF, Lohmann J (1970) Liebigs Ann Chem 733:88

    Article  Google Scholar 

  120. Pedley JG, Naylor RD, Kirby SP (1986) Thermochemistry of organic compounds. Champan and Hall, New York

    Book  Google Scholar 

  121. Berkowitz J, Ellison GB, Gutman D (1994) J Chem Phys 98:2744

    Article  CAS  Google Scholar 

  122. Gurvich LV, Veyts IV, Alcock CB (1989) Thermodynamic properties of individual substances. Hemisphere, New York

    Google Scholar 

  123. Roth WR, Hopf H, Horn C (1994) Chem Ver 127:1765

    CAS  Google Scholar 

  124. Henry DJ, Parkinson CJ, Mayer PM, Radom L (2001) J Phys Chem A 105:6750

    Article  CAS  Google Scholar 

  125. Menon AS, Wood GPF, Moran D, Radom L (2007) J Phys Chem A 111:13638

    Article  CAS  Google Scholar 

  126. Izgorodina EI, Coote ML (2006) J Phys Chem A 110:2486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for technical and human support provided by IZO-SGI SGIker of UPV/EHU and European funding (ERDF and ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ruipérez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Carballeira, D., Ruipérez, F. Evaluation of modern DFT functionals and G3n-RAD composite methods in the modelization of organic singlet diradicals. J Mol Model 22, 76 (2016). https://doi.org/10.1007/s00894-016-2950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2950-z

Keywords

Navigation