Skip to main content
Log in

Structure, vibrational frequencies, ionization energies, and photoelectron spectrum of the para-benzyne radical anion

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Equilibrium structure, vibrational frequencies, and ionization energies of the para-benzyne radical anion are characterized by coupled-cluster and equation-of-motion methods. Vibronic interactions with the low-lying excited state result in a flat potential energy surface along the coupling mode and even in a lower-symmetry C2v structures. Additional complications arise due to Hartree–Fock instabilities and near-instabilities. The magnitude of vibronic interactions was characterized by geometrical parameters, charge localization patterns and energy differences between the D2h and C2v structures. The observed trends suggest that the C2v minimum predicted by several theoretical methods is an artifact of incomplete correlation treatment. The comparison between the calculated and experimental spectrum confirmed D2h structure of the anion, as well as accuracy of the coupled-cluster and spin-flip structures, frequencies and normal modes of the anion and the diradical. Density functional calculations (B3LYP) yielded only a D2h minimum, however, the quality of the structure and vibrational frequencies is poor, as follows from the comparison to high-level wave function calculations and the calculated spectrum. The analysis of charge localization patterns and the performance of different functionals revealed that B3LYP underestimates the magnitude of vibronic interactions due to self-interaction error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wenk HH, Winkler M and Sander W (2003). Angew Chem Int Ed Engl 42: 502

    Article  CAS  Google Scholar 

  2. Jones RR and Bergman RG (1972). J Am Chem Soc 94: 660

    Article  CAS  Google Scholar 

  3. Lee MD, Dunne TS, Siegel MM, Chang CC, Morton G0 and Borders DB (1987). J Am Chem Soc 109: 3464

    Article  CAS  Google Scholar 

  4. Borders DB., Doyle TW.,(eds) (1995). Enediyne antibiotics as antitumor agents. Marcel Deekker, New York

    Google Scholar 

  5. Maeda H, Edo K, Ishida N (eds) (1997). Neocarzinostatin: the past, present and future of an anticancer drug. Springer, New York

    Google Scholar 

  6. Schottelius MJ and Chen P (1996). Angew Chem Int Ed Engl 3: 1478

    Google Scholar 

  7. Hoffner J, Schottelius MJ, Feichtinger D and Chen P (1998). J Am Chem Soc 120: 376

    Article  Google Scholar 

  8. Nicolaou KC and Smith AL (1992). Acc Chem Res 25: 497

    Article  CAS  Google Scholar 

  9. Bowles DM, Palmer GJ, Landis CA, Scott JL and Anthony JE (2001). Tetrahedron 57: 3753

    Article  CAS  Google Scholar 

  10. Zeidan T, Manoharan M and Alabugin IV (2006). J Org Chem 71: 954

    Article  Google Scholar 

  11. Wenthold PG, Hu J and Squires RR (1996). J Am Chem Soc 118: 11865

    Article  Google Scholar 

  12. Wenthold PG, Squires RR and Lineberger WC (1998). J Am Chem Soc 120: 5279

    Article  CAS  Google Scholar 

  13. Eshdat L, Berger H, Hopf H and Rabinovitz M (2002). J Am Chem Soc 124: 3822

    Article  CAS  Google Scholar 

  14. Alabugin IV and Kovalenko SV (2002). J Am Chem Soc 124: 9052

    Article  CAS  Google Scholar 

  15. Alabugin IV and Manoharan M (2003). J Am Chem Soc 125: 4495

    Article  CAS  Google Scholar 

  16. Nash JJ and Squires RR (1996). J Am Chem Soc 118: 11872

    Article  Google Scholar 

  17. Davidson ER and Borden WT (1983). J Phys Chem 87: 4783

    Article  CAS  Google Scholar 

  18. Cohen RD and Sherrill CD (2001). J Chem Phys 114: 8257

    Article  CAS  Google Scholar 

  19. Crawford TD, Stanton JF, Allen WD and Schaefer III HF (1997). J Chem Phys 107: 10626

    Article  Google Scholar 

  20. Stanton JF (2001). J Chem Phys 115: 10382

    Article  CAS  Google Scholar 

  21. Russ NJ, Crawford TD and Tschumper GS (2005). J Chem Phys 120: 7298

    Article  Google Scholar 

  22. Löwdin P-O (1963). Rev Mod Phys 35: 496

    Article  Google Scholar 

  23. Eisfeld W and Morokuma K (2000). J Chem Phys 113: 5587

    Article  CAS  Google Scholar 

  24. Crawford TD, Kraka E, Stanton JF and Cremer D (2001). J Chem Phys 114: 10638

    Article  CAS  Google Scholar 

  25. Wladyslawski M, Nooijen M (2002) In ACS Symposium Series, Vol. 828, pp 65–92,

  26. Slipchenko LV and Krylov AI (2006). J Phys Chem A 110: 291

    Article  Google Scholar 

  27. Krishnan R, Binkley JS, Seeger R and Pople JA (1980). J Chem Phys 72: 650

    Article  CAS  Google Scholar 

  28. Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265

    Article  CAS  Google Scholar 

  29. Dunning TH and Woon DE (1994). J Chem Phys 80: 3265

    Google Scholar 

  30. Cristian AMC, Shao Y and Krylov AI (2004). J Phys Chem A 108: 6581

    Article  CAS  Google Scholar 

  31. Purvis GD and Bartlett RJ (1982). J Chem Phys 76: 1910

    Article  CAS  Google Scholar 

  32. Raghavachari K, Trucks GW, Pople JA and Head-Gordon M (1989). Chem Phys Lett 157: 479

    Article  CAS  Google Scholar 

  33. Sherrill CD, Krylov AI, Byrd EFC and Head-Gordon M (1998). J Chem Phys 109: 4171

    Article  CAS  Google Scholar 

  34. Nooijen M and Bartlett RJ (1995). J Chem Phys 102: 3629

    Article  Google Scholar 

  35. Krylov AI (2001). Chem Phys Lett 338: 375

    Article  CAS  Google Scholar 

  36. Levchenko SV and Krylov AI (2004). J Chem Phys 120: 175

    Article  CAS  Google Scholar 

  37. Becke AD (1993). J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  38. Arnold DW (1994)PhD Thesis, UC Berkeley

  39. Shao Y, Head-Gordon M and Krylov AI (2003). J Chem Phys 118: 4807

    Article  CAS  Google Scholar 

  40. NBO 50 Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute, University of Wisconsin, Madison, WI

  41. Mulliken RS (1955). J Chem Phys 23: 1997

    Article  Google Scholar 

  42. Kong J, White CA, Krylov AI, Sherrill CD, Adamson RD, Furlani TR, Lee MS, Lee AM, Gwaltney SR, Adams TR, Ochsenfeld C, Gilbert ATB, Kedziora GS, Rassolov VA, Maurice DR, Nair N, Shao Y, Besley NA, Maslen P, Dombroski JP, Daschel H, Zhang W, Korambath PP, Baker J, Bird EFC, Van Voorhis T, Oumi M, Hirata S, Hsu C-P, Ishikawa N, Florian J, Warshel A, Johnson BG, Gill PMW, Head-Gordon M and Pople JA (2000). J Comput Chem 21: 1532

    Article  CAS  Google Scholar 

  43. ACES II Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ (1993) The package also contains modified versions of the MOLECULE Gaussian integral program of J Almlöf and PR Taylor, the ABACUS integral derivative program written by TU Helgaker, HJAa Jensen, P Jørgensen and PR Taylor, and the PROPS property evaluation integral code of PR Taylor

  44. Helgaker T, Jørgensen P and Olsen J (2000). Molecular electronic structure theory. Wiley, New York

    Google Scholar 

  45. Munsch TE, Slipchenko LV, Krylov AI and Wenthold PG (2004). J Org Chem 69: 5735

    Article  CAS  Google Scholar 

  46. Bally T and Sastry GN (1997). J Phys Chem A 101: 7923

    Article  Google Scholar 

  47. Polo V, Kraka E and Cremer D (2002). Molecular Physics 100: 1771

    Article  CAS  Google Scholar 

  48. Zhang Y and Yang W (1998). J Chem Phys 109: 2604

    Article  CAS  Google Scholar 

  49. Lundber M and Siegbahn PEM (2005). J Chem Phys 122: 1

    Google Scholar 

  50. Reed DR, Hare M and Kass SR (2000). J Am Chem Soc 122: 10689

    Article  CAS  Google Scholar 

  51. Slipchenko LV and Krylov AI (2002). J Chem Phys 117: 4694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna I. Krylov.

Additional information

Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanovschi, V., Krylov, A.I. & Wenthold, P.G. Structure, vibrational frequencies, ionization energies, and photoelectron spectrum of the para-benzyne radical anion. Theor Chem Account 120, 45–58 (2008). https://doi.org/10.1007/s00214-007-0305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0305-7

Keywords

Navigation