Skip to main content
Log in

Comparison of the directionality of the halogen, hydrogen, and lithium bonds between HOOOH and XF (X = Cl, Br, H, Li)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Detailed electrostatic potential (ESP) analyses were performed to compare the directionality of halogen bonds with those of hydrogen bonds and lithium bonds. To do this, the interactions of HOOOH with the molecules XF (X = Cl, Br, H, Li) were investigated. For each molecule, the percentage of the van der Waals (vdW) molecular surface that intersected with the ESP surface was used to roughly quantify the directionality of the halogen/hydrogen/lithium bond associated with the molecule. The size of the region of intersection was found to increase in the following order: ClF < BrF < HF < LiF. The maximum ESP in the region of intersection, V S, max, was observed to become more positive according to the sequence ClF < BrF < HF < LiF. For ClF and BrF, the positive electrostatic potential was concentrated in a very small region of the vdW molecular surface. On the other hand, for HF and LiF, the positive electrostatic potential was more diffusely scattered across the vdW surface than for ClF and BrF. Also, the optimized geometries of the dipolymers HOOOH··· XF (X = Cl, Br, H, Li) indicated that halogen bonds are more directional than hydrogen bonds and lithium bonds, consistent with the results of ESP analyses.

Electrostatic potential (ESP) contour maps in the xz plane of ClF and BrF

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–d
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  2. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  3. Pierangelo M, Giuseppe R (2015) Halogen bonding II: impact on materials chemistry and life sciences. Topics in current chemistry, vol 359. Springer, Cham

  4. Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Chem Rev 115:7118–7195

    Article  CAS  Google Scholar 

  5. Li QZ, Li HB (2015) Noncovalent forces. Springer, Switzerland

  6. Ji J, Zeng Y, Zhang X, Zheng S, Meng L (2013) J Mol Model 19:4887–4895

    Article  CAS  Google Scholar 

  7. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Ithaca

  8. Allen LC (1989) J Am Chem Soc 111:9003–9014

    Article  CAS  Google Scholar 

  9. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  10. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  11. Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Article  CAS  Google Scholar 

  12. Zeng Y, Zhu M, Meng L, Zheng S (2011) ChemPhysChem 12:3584–3590

    Article  CAS  Google Scholar 

  13. Zeng Y, Zhang X, Li X, Meng L, Zheng S (2011) ChemPhysChem 12:1080–1087

    Article  CAS  Google Scholar 

  14. Zeng Y, Li X, Zhang X, Zheng S, Meng L (2011) J Mol Model 17:2907–2918

    Article  CAS  Google Scholar 

  15. Li X, Zeng Y, Zhang X, Zheng S, Meng L (2011) J Mol Model 17:757–767

    Article  CAS  Google Scholar 

  16. Cerkovnik J, Plesnicar B (2013) Chem Rev 113:7930–7951

    Article  CAS  Google Scholar 

  17. Hagelin H, Murray JS, Politzer P, Brinck T, Berthelot M (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  18. Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114

  19. Politzer P, Murray JS (2001) Fluid Phase Equilib 185:129–137

    Article  CAS  Google Scholar 

  20. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  21. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

  22. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Topics in current chemistry. Springer, Berlin

    Google Scholar 

  23. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  24. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  25. Murray JS, Politzer P (1987) Theor Chim Acta 72:507–517

    Article  CAS  Google Scholar 

  26. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  27. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  28. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  30. Lu T, Chen F (2013) J Mol Model 19:5387–5395

    Article  CAS  Google Scholar 

  31. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  32. Lu T, Chen F (2012) J Mol Graph Model 38:314–323

    Article  Google Scholar 

  33. Bader RFW, Larouche A, Gatti C, Carroll MT, MacDougall PJ, Wiberg KB (1987) J Chem Phys 87:1142

    Article  CAS  Google Scholar 

  34. Alvarez S (2013) Dalton Trans 42:8617–8636

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Contract grant sponsors: National Natural Science Foundation of China (21371045 and 21373075), Natural Science Foundation of Hebei Province (B2015205045 and B2014205109), Education Department Foundation of Hebei Province (ZH2012106 and ZD20131037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Zeng.

Ethics declarations

The authors have full access to all of the raw data used in this work, and the authors agree to allow the journal to review their data if requested.

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Meng, L., Zhang, X. et al. Comparison of the directionality of the halogen, hydrogen, and lithium bonds between HOOOH and XF (X = Cl, Br, H, Li). J Mol Model 22, 52 (2016). https://doi.org/10.1007/s00894-016-2919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2919-y

Keywords

Navigation