Skip to main content
Log in

How do halogen bonds (S–O⋯I, N–O⋯I and C–O⋯I) and halogen–halogen contacts (C–I⋯I–C, C–F⋯F–C) subsist in crystal structures? A quantum chemical insight

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Thirteen X-ray crystal structures containing various non-covalent interactions such as halogen bonds, halogen–halogen contacts and hydrogen bonds (I⋯N, I⋯F, I⋯I, F⋯F, I⋯H and F⋯H) were considered and investigated using the DFT-D3 method (B97D/def2-QZVP). The interaction energies were calculated at MO62X/def2-QZVP and MP2/aug-cc-pvDZ level of theories. The higher interaction and dispersion energies (2nd crystal) of −9.58 kcal mol−1 and −7.10 kcal mol−1 observed for 1,4-di-iodotetrafluorobenzene bis [bis (2-phenylethyl) sulfoxide] structure indicates the most stable geometrical arrangement in the crystal packing. The electrostatic potential values calculated for all crystal structures have a positive σ-hole, which aids understanding of the nature of σ-hole bonds. The significance of the existence of halogen bonds in crystal packing environments was authenticated by replacing iodine atoms by bromine and chlorine atoms. Nucleus independent chemical shift analysis reported on the resonance contribution to the interaction energies of halogen bonds and halogen–halogen contacts. Hirshfeld surface analysis and topological analysis (atoms in molecules) were carried out to analyze the occurrence and strength of all non-covalent interactions. These analyses revealed that halogen bond interactions were more dominant than hydrogen bonding interactions in these crystal structures.

Molecluar structure of 1,4-Di-iodotetrafluorobenzene bis(thianthrene 5-oxide) moelcule and its corresponding molecular electrostatic potential map for the view of σ-hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci USA 101:16789

    Article  CAS  Google Scholar 

  2. Voth AR, Hays FA, Ho PS (2007) Proc Natl Acad Sci USA 104:6188

    Article  CAS  Google Scholar 

  3. Jentzsch AV, Emery D, Mareda J, Nayak SK, Metrangolo P, Resnati G, Sakai N, Matile S (2012) Nat Commun 3:905

    Article  Google Scholar 

  4. Caballero A, Zapata F, White NG, Costa PJ, Faclix VT, Beer PD (2012) Angew Chem 124:1912

    Article  Google Scholar 

  5. El-Sheshtawy HS, Bassil BS, Assaf KI, Kortz U, Nau WM (2012) J Am Chem Soc 134:19935–19941

    Article  CAS  Google Scholar 

  6. Lu Y, Shi T, Wang Y, Yang H, Yan X, Luo X, Jiang H, Zhu W (2009) J Med Chem 52:2854

    Article  CAS  Google Scholar 

  7. Zha B, Miao X, Liu P, Wu Y, Deng W (2014) Chem Commun 50:9003

    Article  CAS  Google Scholar 

  8. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16

    Article  CAS  Google Scholar 

  9. Meazza L, Foster JA, Fucke K, Metrangolo P, Resnati G, Steed JW (2013) Nat Chem 5:42

    Article  CAS  Google Scholar 

  10. Kawai S, Sadeghi A, Xu F, Peng L, Orita A, Otera J, Goedecker S, Meyer E (2015) ACS Nano 9:2574

    Article  CAS  Google Scholar 

  11. Price S, Stone A, Lucas J, Rowland R, Thornley A (1994) J Am Chem Soc 116:4910

    Article  CAS  Google Scholar 

  12. McDowell SA, Joseph JA (2015) Mol Phys 113:16

    Article  CAS  Google Scholar 

  13. Zhou P-P, Qiu W-Y, Liu S, Jin N-Z (2011) Phys Chem Chem Phys 13:7408

    Article  CAS  Google Scholar 

  14. Murray-Rust P, Motherwell WS (1979) J Am Chem Soc 101:4374

    Article  CAS  Google Scholar 

  15. Deepa P, Pandiyan BV, Kolandaivel P, Hobza P (2014) Phys Chem Chem Phys 16:2038

    Article  CAS  Google Scholar 

  16. Deepa P, Sedlak R, Hobza P (2014) Phys Chem Chem Phys 16:6679

    Article  CAS  Google Scholar 

  17. Sedlak R, Deepa P, Hobza P (2014) J Phys Chem A 118:3846

    Article  CAS  Google Scholar 

  18. Pandiyan BV, Deepa P, Kolandaivel P (2014) Phys Chem Chem Phys 16:19928

    Article  Google Scholar 

  19. Pandiyan BV, Deepa P, Kolandaivel P (2014) Phys Chem Chem Phys 17:27496

    Article  Google Scholar 

  20. Kolr MH, Deepa P, Ajani H, Pecina A, Hobza P (2015) Top Curr Chem 359:1

  21. Meyer F, Dubois P (2013) CrystEngComm 15:3058

    Article  CAS  Google Scholar 

  22. Andrews MB, Cahill CL (2012) Dalton Trans 41:3911

    Article  Google Scholar 

  23. Paton AS, Lough AJ, Bender TP (2011) CrystEngComm 13:3653

    Article  CAS  Google Scholar 

  24. Wallnoefer HG, Fox T, Liedl KR, Tautermann CS (2010) Phys Chem Chem Phys 12:14941

    Article  CAS  Google Scholar 

  25. Pigge FC, Vangala VR, Kapadia PP, Swenson DC, Rath NP (2008) Chem Commun 39:4726

    Article  Google Scholar 

  26. Jetti RK, Nangia A, Xue F, Mak TC (2001) Chem Commun 2001:919

  27. Riley KE, Murray JS, Fanfrlik JI, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2013) J Mol Model 17:3309

    Article  Google Scholar 

  28. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178

    Article  CAS  Google Scholar 

  31. McDowell SA, Joseph Physical JA (2014) Chem Chem Phys 16:10854

    Article  CAS  Google Scholar 

  32. Riley KE, Merz KM (2007) J Phys Chem A 111:1688

    Article  CAS  Google Scholar 

  33. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  34. Grimme S, Ehrlich S, Goerigk L (1997) J Comput Chem 32:1456

    Article  Google Scholar 

  35. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  36. Chambers J, Migliorini F (1997) Bull Am Astronom Soc 29:1024

  37. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723

    Article  CAS  Google Scholar 

  38. Bader RF, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968

    Article  CAS  Google Scholar 

  39. Zahedi E, Pangh A, Ghorbanpour H (2015) Surf Rev Lett 22:1550005

    Article  CAS  Google Scholar 

  40. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  41. Hirshfeld FL (1977) Theor Chim Acta 44:12

    Article  Google Scholar 

  42. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19

    Article  CAS  Google Scholar 

  43. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378

    Article  CAS  Google Scholar 

  44. Wang R, Dols TS, Lehmann CW, Englert U (2012) Chem Commun 48:6830

    Article  CAS  Google Scholar 

  45. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 196:3814

    Article  Google Scholar 

  46. Roohi H, Anjomshoa E (2011) Bull Chem Soc Jpn 84:754

    Article  CAS  Google Scholar 

  47. Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Chem Rev 115:7118

    Article  CAS  Google Scholar 

  48. Pandiyan BV, Deepa P, Kolandaivel P (2016) Mol Phys. doi: 10.1080/00268976.2016.1255796

  49. Vijaya Pandiyan B, Kolandaivel P, Deepa P (2014) Mol Phys 112:1609

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was part of the Research Project (File Number: YSS/2015/000275) and P.D. is thankful to the Science and Engineering Research Board (SERB), Government of India, New Delhi for the award of this Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Deepa or P. Kolandaivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiyan, B.V., Deepa, P. & Kolandaivel, P. How do halogen bonds (S–O⋯I, N–O⋯I and C–O⋯I) and halogen–halogen contacts (C–I⋯I–C, C–F⋯F–C) subsist in crystal structures? A quantum chemical insight. J Mol Model 23, 16 (2017). https://doi.org/10.1007/s00894-016-3181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3181-z

Keywords

Navigation