Skip to main content
Log in

On the intrinsic reactivity index for electrophilicity/nucleophilicity responses

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a critical discussion related to the recent definition of the intrinsic reactivity index, IRI, (Tetrahedron Lett. 2013, 54, 339-342; Tetrahedron 2013, 69, 4247-4258) formulated to describe both, electrophilicity (charge acceptance) and nucleophilicity (charge donation) reactivities. We here stress that such an IRI model, based on the quantity μ/η, should be properly related to theoretical approximations associated to the change in the global electronic energy of a given chemical system under interaction with a suitable electron bath (Gazquez JL et al. J Phys Chem A 2007, 111, 1966-1970). Further, the limitations of the IRI model are presented by emphasizing that the intrinsic relative scales of electrophilicity and nucleophilicity within a second-order perturbation approach must account for the further stabilization of the two interacting species (Chamorro E et al. J Phys Chem A 2013, 117, 2636-2643).

Relative electrophilicity/nucleophilicity reactive responses

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S-i K, Kaneno D, Fujiyama R (2013) Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals. Tetrahedron 69:4247–4258. doi:10.1016/j.tet.2013.03.083

    Article  Google Scholar 

  2. S-i K, Kaneno D, Fujiyama R (2013) Parr's index to describe both electrophilicity and nucleophilicity. Tetrahedron Lett 54:339–342. doi:10.1016/j.tetlet.2012.11.039

    Article  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873. doi:10.1021/cr990029p

    Article  CAS  Google Scholar 

  4. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534. doi:10.1002/qua.20307

    Article  CAS  Google Scholar 

  5. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018. doi:10.1021/ja9924039

    Article  CAS  Google Scholar 

  6. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154. doi:10.1002/(sici)1096-987x(19990115)20:1<129::aid-jcc13>3.0.co;2-a

    Article  CAS  Google Scholar 

  7. Parr RG, Von Szentpaly L, Liu (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. doi:10.1021/ja983494x

    Article  CAS  Google Scholar 

  8. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091. doi:10.1021/cr040109f

    Article  CAS  Google Scholar 

  9. Chattaraj PK, Roy DR (2007) Update 1 of: Electrophilicity Index. Chem Rev 107:PR46–PR74. doi:10.1021/cr078014b

    Article  CAS  Google Scholar 

  10. Chattaraj PK, Giri S, Duley S (2011) Update 2 of: Electrophilicity Index. Chem Rev 111:PR43–PR75. doi:10.1021/cr100149p

    Article  Google Scholar 

  11. Parr RG, Yang W (1989) Book density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  12. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970. doi:10.1021/jp065459f

    Article  CAS  Google Scholar 

  13. Chamorro E, Duque-Norena M, Perez P (2009) Further relationships between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct (THEOCHEM) 901:145–152. doi:10.1016/j.theochem.2009.01.014

    Article  CAS  Google Scholar 

  14. Chamorro E, Duque-Norena M, Perez P (2009) A comparison between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct (THEOCHEM) 896:73–79. doi:10.1016/j.theochem.2008.11.009

    Article  CAS  Google Scholar 

  15. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–190. doi:10.1039/b606877d

    Article  CAS  Google Scholar 

  16. Tozer DJ, De Proft F (2005) Computation of the hardness and the problem of negative electron affinities in density functional theory. J Phys Chem A 109:8923–8929. doi:10.1021/jp053504y

    Article  CAS  Google Scholar 

  17. Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377. doi:10.1007/bf02708340

    Article  CAS  Google Scholar 

  18. Pearson RG (1995) The HSAB principle - More quantitative aspects. Inorg Chim Acta 240:93–98. doi:10.1016/0020-1693(95)04648-8

    Article  CAS  Google Scholar 

  19. Chattaraj PK, Cedillo A, Parr RG (1995) Variational method for determining the fukui function and chemical hardness of an electronic system. J Chem Phys 103:7645–7646. doi:10.1063/1.470284

    Article  CAS  Google Scholar 

  20. Moss RA, Krogh-Jespersen K (2013) Carbenic philicity and the ‘intrinsic reactivity index’. Tetrahedron Lett 54:4303–4305. doi:10.1016/j.tetlet.2013.06.007

    Article  CAS  Google Scholar 

  21. Domingo LR, Perez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175. doi:10.1039/c1ob05856h

    Article  CAS  Google Scholar 

  22. Jaramillo P, Perez P, Contreras R, Tiznado W, Fuentealba P (2006) Definition of a nucleophilicity scale. J Phys Chem A 110:8181–8187. doi:10.1021/jp057351q

    Article  CAS  Google Scholar 

  23. Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624. doi:10.1021/jo800572a

    Article  CAS  Google Scholar 

  24. Chamorro E, Perez P, De Proft F, Geerlings P (2006) Philicity indices within the spin-polarized density-functional theory framework. J Chem Phys 124:044105. doi:10.1063/1.2161187

    Article  CAS  Google Scholar 

  25. Chamorro E, Perez P, Domingo LR (2013) On the nature of Parr functions to predict the most reactive sites along organic polar reactions. Chem Phys Lett 582:141–143. doi:10.1016/j.cplett.2013.07.020

    Article  CAS  Google Scholar 

  26. Chamorro E, Duque-Norena M, Notario R, Perez P (2013) Intrinsic Relative Scales of Electrophilicity and Nucleophilicity. J Phys Chem A 117:2636–2643. doi:10.1021/jp312143t

    Article  CAS  Google Scholar 

  27. Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H (2001) Reference scales for the characterization of cationic electrophiles and neutral nucleophiles. J Am Chem Soc 123:9500–9512. doi:10.1021/ja010890y

    Article  CAS  Google Scholar 

  28. Mayr H, Kempf B, Ofial AR (2003) pi-nucleophilicity in carbon-carbon bond-forming reactions. Acc Chem Res 36:66–77. doi:10.1021/ar020094c

    Article  CAS  Google Scholar 

  29. Mayr H, Ofial AR (2008) Do general nucleophilicity scales exist? J Phys Org Chem 21:584–595. doi:10.1002/poc.1325

    Article  CAS  Google Scholar 

  30. Mayr H, Patz M (1994) Scales of nucleophilicity and electrophilicity - a system for ordering polar organic and organometallic reactions. Angew Chem Int Ed Engl 33:938–957. doi:10.1002/anie.199409381

    Article  Google Scholar 

  31. Reyes A, Andrea Cuervo P, Orozco F, Abonia R, Duque-Norena M, Perez P, Chamorro E (2013) Theoretical investigation of the selectivity in intramolecular cyclizations of some 2'aEuro"aminochalcones to dihydroquinolin-8-ones and indolin-3-ones. J Mol Model 19:3611–3618. doi:10.1007/s00894-013-1893-x

    Article  CAS  Google Scholar 

  32. Perez P, Toro-Labbe A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Org Chem 67:4747–4752. doi:10.1021/jo020255q

    Article  CAS  Google Scholar 

  33. Phan TB, Breugst M, Mayr H (2006) Towards a general scale of nucleophilicity? Angew Chem Int Ed 45:3869–3874. doi:10.1002/anie.200600542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the continuous support received from FONDECYT-Chile through Project No. 1140343 (EC). EC also thanks the Universidad Andres Bello (UNAB) for research grant No. DI-219-12/N (Núcleo CIMFQ), and to the Millennium Science Initiative (ICM, Chile) for the support through the Millennium Nucleus Chemical Process and Catalysis (CPC), project NC120082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Chamorro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, E., Melin, J. On the intrinsic reactivity index for electrophilicity/nucleophilicity responses. J Mol Model 21, 53 (2015). https://doi.org/10.1007/s00894-015-2608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2608-2

Keywords

Navigation