Skip to main content
Log in

Local electrophilicity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work some possibilities for deriving a local electrophilicity are studied. First, we consider the original definition proposed by Chattaraj, Maiti, and Sarkar (J Phys Chem A 107:4973, 2003), in which the local electrophilicity is given by the product of the global electrophilicity, and the Fukui function for charge acceptance is derived by two different approaches, making use of the chain rule for functional derivatives. We also modify the proposals based on the electron density so as to have a definition with the same units of the original definition, which also introduces a dependence in the Fukui function for charge donation. Additionally, we also explore other possibilities using the tools of information theory and the temperature dependent reactivity indices of the density functional theory of chemical reactivity. The poor results obtained from the last two approaches lead us to conjecture that this is due to the fact that the global electrophilicity is not a derivative, like most of the other reactivity indices. The conclusion is that Chattaraj’s suggestion seems to be the simplest, but at the same time a very reliable approach to this important property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Chermette H (1998) Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 180:699–721

    Article  Google Scholar 

  3. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  4. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534. https://doi.org/10.1002/qua.20307

    Article  CAS  Google Scholar 

  5. Gázquez J (2008) Perspectives on density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    Google Scholar 

  6. Ayers PW, Yang WT, Bartolotti LJ (2009) Fukui function. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, pp 255–267

    Google Scholar 

  7. Liu S-B (2009) Conceptual density functional theory and some recent developments. Acta Phys -Chim Sin 25:590–600

    CAS  Google Scholar 

  8. Fuentealba P, Cardenas C (2015) Density functional theory of chemical reactivity. In: Springborg M, Joswig OJ (eds) Chemical modelling, vol 11. The Royal Society of Chemistry, pp 151-174. https://doi.org/10.1039/9781782620112-00151

  9. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807. https://doi.org/10.1063/1.436185

    Article  CAS  Google Scholar 

  10. Parr RG, Pearson RG (1983) Absolute hardness - companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  11. Cárdenas C, Heidar-Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. Phys Chem Chem Phys 18:25721–25734. https://doi.org/10.1039/C6CP04533B

    Article  CAS  PubMed  Google Scholar 

  12. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  13. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn-sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–2863. https://doi.org/10.1063/1.447964

    Article  CAS  Google Scholar 

  14. Yang WT, Parr RG (1985) Hardness, softness, and the Fukui function in the electron theory of metals and catalysis. Proc Natl Acad Sci USA 82:6723–6726. https://doi.org/10.1073/pnas.82.20.6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Ed 64:561–567

    Article  CAS  Google Scholar 

  16. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  17. Pearson RG (1966) Acids and bases. Science 151:172–177

    Article  CAS  PubMed  Google Scholar 

  18. Pearson RG (1967) Hard and soft acids and bases. Chem Britain 3:103–107

    CAS  Google Scholar 

  19. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J.Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  20. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  21. Pearson RG, Palke WE (1992) Support for a principle of maximum hardness. J Phys Chem 96:3283–3285. https://doi.org/10.1021/j100187a020

    Article  CAS  Google Scholar 

  22. Gázquez JL (1993) Hardness and softness in density functional theory. Struct Bond 80:27–43

    Article  Google Scholar 

  23. Gázquez JL, Méndez F (1994) The hard and soft acids and bases principle - an atoms in molecules viewpoint. J Phys Chem 98:4591–4593. https://doi.org/10.1021/j100068a018

    Article  Google Scholar 

  24. Chattaraj PK, Liu GH, Parr RG (1995) The maximum hardness principle in the Gyftopoulos-Hatsopoulos three-level model for an atomic or molecular species and its positive and negative ions. Chem Phys Lett 237:171–176

    Article  CAS  Google Scholar 

  25. Gázquez JL (1997) Bond energies and hardness differences. J Phys Chem A 101:9464–9469

    Article  Google Scholar 

  26. Gázquez JL (1997) The hard and soft acids and bases principle. J Phys Chem A 101:4657–4659

    Article  Google Scholar 

  27. Chattaraj PK (2001) Chemical reactivity and selectivity: local HSAB principle versus frontier orbital theory. J Phys Chem A 105:511–513

    Article  CAS  Google Scholar 

  28. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J Am Chem Soc 123:7951–7952

    Article  CAS  PubMed  Google Scholar 

  29. Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102

    Article  CAS  PubMed  Google Scholar 

  30. Chattaraj PK, Ayers PW (2005) The maximum hardness principle implies the hard/soft acid/base rule. J Chem Phys 123:086101

    Article  CAS  PubMed  Google Scholar 

  31. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

    Article  CAS  PubMed  Google Scholar 

  32. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss. 135:161–190

    Article  CAS  PubMed  Google Scholar 

  33. Chattaraj PK, Ayers PW, Melin J (2007) Further links between the maximum hardness principle and the hard/soft acid/base principle: insights from hard/soft exchange reactions. Phys Chem Chem Phys 9:3853–3856

    Article  CAS  PubMed  Google Scholar 

  34. Chattaraj PK (2007) A minimum electrophilicity perspective of the HSAB principle. Indian J Phys 81:871–879

    CAS  Google Scholar 

  35. Reed JL (2012) Hard and soft acids and bases: structure and process. J Phys Chem A 116:7147–7153. https://doi.org/10.1021/jp301812j

    Article  CAS  PubMed  Google Scholar 

  36. Ayers PW, Cardenas C (2013) Communication: a case where the hard/soft acid/base principle holds regardless of acid/base strength. J Chem Phys 138:181106

    Article  CAS  PubMed  Google Scholar 

  37. Cardenas C, Ayers PW (2013) How reliable is the hard-soft acid-base principle? An assessment from numerical simulations of electron transfer energies. Phys Chem Chem Phys 15:13959–13968. https://doi.org/10.1039/c3cp51134k

    Article  CAS  PubMed  Google Scholar 

  38. Miranda-Quintana RA, Kim TD, Cárdenas C, Ayers PW (2017) The HSAB principle from a finite-temperature grand-canonical perspective. Theor Chem Accounts 136:135

    Article  CAS  Google Scholar 

  39. Parr RG, Von Szentpaly L, Liu SB (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  40. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091. https://doi.org/10.1021/cr040109f

    Article  CAS  PubMed  Google Scholar 

  41. Chattaraj PK, Roy DR (2007) Update 1 of: Electrophilicity index. Chem Rev 107:PR46–PR74

    Article  CAS  Google Scholar 

  42. Chattaraj PK, Chakraborty A, Giri S (2009) Net electrophilicity. J Phys Chem A 113:10068–10074

    Article  CAS  PubMed  Google Scholar 

  43. Chattaraj PK, Giri S, Duley S (2011) Update 2 of: electrophilicity index. Chem Rev 111:PR43–PR75. https://doi.org/10.1021/cr100149p

    Article  PubMed  Google Scholar 

  44. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    Article  CAS  Google Scholar 

  45. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number - derivative discontinuities of the energy. Phys Rev Lett 49:1691–1694. https://doi.org/10.1103/PhysRevLett.49.1691

    Article  CAS  Google Scholar 

  46. Yang WT, Zhang YK, Ayers PW (2000) Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory. Phys Rev Lett 84:5172–5175. https://doi.org/10.1103/PhysRevLett.84.5172

    Article  CAS  PubMed  Google Scholar 

  47. Ayers PW (2008) The dependence on and continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303. https://doi.org/10.1007/s10910-006-9195-5

    Article  CAS  Google Scholar 

  48. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554–2557

    Article  CAS  Google Scholar 

  49. Franco-Pérez M, Gázquez JL, Ayers PW, Vela A (2015) Revisiting the definition of the electronic chemical potential, chemical hardness, and softness at finite temperatures. J Chem Phys 143:154103

    Article  CAS  PubMed  Google Scholar 

  50. Yang WT, Mortier WJ (1986) The use of global and local molecular-parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  PubMed  Google Scholar 

  51. Contreras RR, Fuentealba P, Galvan M, Perez P (1999) A direct evaluation of regional Fukui functions in molecules. Chem Phys Lett 304:405–413

    Article  CAS  Google Scholar 

  52. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551

    Article  CAS  Google Scholar 

  53. Ayers PW, Morrison RC, Roy RK (2002) Variational principles for describing chemical reactions: condensed reactivity indices. J Chem Phys 116:8731–8744

    Article  CAS  Google Scholar 

  54. Bultinck P, Fias S, Van Alsenoy C, Ayers PW, Carbo-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102

  55. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels- Alder reactions. J Phys Chem A 106:6871–6875

    Article  CAS  Google Scholar 

  56. Pérez P, Toro-Labbé A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Org Chem 67:4747–4752

    Article  CAS  PubMed  Google Scholar 

  57. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  58. Chattaraj PK, Cedillo A, Parr RG (1995) Variational method for determining the Fukui function and chemical hardness of an electronic system. J Chem Phys 103:7645–7646

    Article  CAS  Google Scholar 

  59. Gázquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970. https://doi.org/10.1021/jp065459f

    Article  CAS  PubMed  Google Scholar 

  60. Cedillo A, Contreras R (2012) A local extension of the electrophilicity index concept. J Mex Chem Soc 56:257–260

    CAS  Google Scholar 

  61. Morell C, Gázquez JL, Vela A, Guegan F, Chermette H (2014) Revisiting electroaccepting and electrodonating powers: proposals for local electrophilicity and local nucleophilicity descriptors. Phys Chem Chem Phys 16:26832–26842. https://doi.org/10.1039/c4cp03167a

    Article  CAS  PubMed  Google Scholar 

  62. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212. https://doi.org/10.1021/jp046577a

    Article  CAS  PubMed  Google Scholar 

  63. Morell C, Grand A, Toro-Labbé A (2006) Theoretical support for using the Delta f(r) descriptor. Chem Phys Lett 425:342–346. https://doi.org/10.1016/j.cplett.2006.05.003

    Article  CAS  Google Scholar 

  64. Heidar-Zadeh F, Fias S, Vöhringer-Martinez E, Verstraelen T, Ayers PW (2017) The local response of global descriptors. Theor Chem Accounts 136:19

    Article  CAS  Google Scholar 

  65. Tognetti V, Morell C, Joubert L (2015) Quantifying electro/nucleophilicity by partitioning the dual descriptor. J Comput Chem 36:649–659. https://doi.org/10.1002/jcc.23840

    Article  CAS  PubMed  Google Scholar 

  66. Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2015) Local and linear chemical reactivity response functions at finite temperature in density functional theory. J Chem Phys 143:244117

    Article  CAS  PubMed  Google Scholar 

  67. Franco-Pérez M, Ayers PW, Gázquez JL, Vela A (2017) Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory. Phys Chem Chem Phys 19:13687–13695

    Article  PubMed  Google Scholar 

  68. Franco-Pérez M, Heidar-Zadeh F, Ayers PW, Gázquez JL, Vela A (2017) Going beyond the three-state ensemble model: the electronic chemical potential and Fukui function for the general case. Phys Chem Chem Phys 19:11588–11602

    Article  PubMed  Google Scholar 

  69. Polanco-Ramírez CA, Franco-Pérez M, Carmona-Espíndola J, Gázquez JL, Ayers PW (2017) Revisiting the definition of local hardness and hardness kernel. Phys Chem Chem Phys 19:12355–12364. https://doi.org/10.1039/c7cp00691h

    Article  CAS  PubMed  Google Scholar 

  70. Franco-Perez M, Polanco-Ramirez CA, Gazquez JL, Ayers PW (2018) Reply to the ‘Comment on “Revisiting the definition of local hardness and hardness kernel”’ by C. Morell, F. Guegan, W. Lamine, and H. Chermette, Phys Chem Chem Phys, 2018, 20, doi:10.1039/C7CP04100D. Phys Chem Chem Phys 20:9011–9014. https://doi.org/10.1039/c7cp07974e

    Article  CAS  PubMed  Google Scholar 

  71. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871

    Article  Google Scholar 

  72. Ayers PW, Parr RG (2008) Local hardness equalization: exploiting the ambiguity. J Chem Phys 128:184108

  73. Ayers PW, Parr RG (2008) Beyond electronegativity and local hardness: higher-order equalization criteria for determination of a ground-state electron density. J Chem Phys 129:054111

    Article  CAS  PubMed  Google Scholar 

  74. Gázquez JL, Vela A, Chattaraj PK (2013) Local hardness equalization and the principle of maximum hardness. J Chem Phys 138:214103

    Article  CAS  PubMed  Google Scholar 

  75. Heidar-Zadeh F, Fuentealba P, Cardenas CA, Ayers P (2014) An information-theoretic resolution of the ambiguity in the local hardness. Phys Chem Chem Phys 16:6019-6060-6026

    Article  Google Scholar 

  76. Nalewajski RF, Parr RG (2000) Information theory, atoms in molecules, and molecular similarity. Proc Natl Acad Sci USA 97:8879–8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nalewajski RF, Parr RG (2001) Information theory thermodynamics of molecules and their Hirshfeld fragments. J Phys Chem A 105:7391–7400

    Article  CAS  Google Scholar 

  78. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  79. Kullback S (1997) Information theory and statistics. Dover, Mineola

    Google Scholar 

  80. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge-densities. Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  81. Heidar-Zadeh F, Vinogradov I, Ayers PW (2017) Hirshfeld partitioning from non-extensive entropies. Theor Chem Accounts 136:54

    Article  CAS  Google Scholar 

  82. Heidar-Zadeh F, Ayers PW (2017) Fuzzy atoms in molecules from Bregman divergences. Theor Chem Accounts 136:92

    Article  CAS  Google Scholar 

  83. Heidar-Zadeh F, Ayers PW, Verstraelen T, Vinogradov I, Vöhringer-Martinez E, Bultinck P (2017) Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes. J Phys Chem A 122:4219–4245

  84. Heidar Zadeh F (2017) Variational information-theoretic atoms-in-molecules. McMaster University, Hamilton

    Google Scholar 

  85. Gonzalez MM, Cardenas C, Rodríguez JI, LIU S, Heidar-Zadeh F, Miranda-Quintana RA, Ayers PW, Martínez GM, Carlos C, Juan IR (2017) Quantitative electrophilicity measures. Acta Phys Chim Sin 34:662–674

    Google Scholar 

  86. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

    Google Scholar 

  87. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138

    Article  Google Scholar 

  88. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  89. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  90. Kim K, Jordan KD (1994) Comparison of density functional and MP2 calculations on the water monomer and dimer. J Phys Chem 98:10089–10094

    Article  CAS  Google Scholar 

  91. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  92. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  93. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials - the need for high sampling density in formamide conformational-analysis. J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  94. Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by: i) FONDECYT through projects No 1181121 and 1180623, and ii) Centers Of Excellence With Basal/Conicyt Financing, Grant FB0807. This paper is dedicated to Professor Patrim Chattaraj on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Fuentealba.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles, A., Franco-Pérez, M., Gázquez, J.L. et al. Local electrophilicity. J Mol Model 24, 245 (2018). https://doi.org/10.1007/s00894-018-3785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3785-6

Keywords

Navigation