Skip to main content
Log in

Using the general-purpose reactivity indicator: challenging examples

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We elucidate the regioselectivity of nucleophilic attack on substituted benzenesulfonates, quinolines, and pyridines using a general-purpose reactivity indicator (GPRI) for electrophiles. We observe that the GPRI is most accurate when the incoming nucleophile resembles a point charge. We further observe that the GPRI often chooses reactive “dead ends” as the most reactive sites as well as sterically hindered reactive sites. This means that care must be taken to remove sites that are inherently unreactive. Generally, among sites where reactions actually occur, the GPRI identifies the sites in the molecule that lead to the kinetically favored product(s). Furthermore, the GPRI can discern which sites react with hard reagents and which sites react with soft reagents. Because it is currently impossible to use the mathematical framework of conceptual DFT to identify sterically inaccessible sites and reactive dead ends, the GPRI is primarily useful as an interpretative, not a predictive, tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

  2. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–34

    Article  CAS  Google Scholar 

  3. Johnson PA, Bartolotti LJ, Ayers PW, Fievez T, Geerlings P (2012) Charge density and chemical reactivity: a unified view from conceptual DFT. In: Gatti C, Macchi P (eds) Modern charge density analysis. Springer, New York, pp 715–64

  4. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–873

    Article  CAS  Google Scholar 

  5. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–54

    Article  CAS  Google Scholar 

  6. Geerlings P, Ayers PW, Toro-Labbe A, Chattaraj PK, De Proft F (2012) The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc Chem Res 45:683–95

  7. Gazquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    CAS  Google Scholar 

  8. Liu SB (2009) Conceptual density functional theory and some recent developments. Acta Phys-Chim Sin 25:590–600

  9. De Proft F, Geerlings P, Ayers PW (2014) The conceptual density functional theory perspective of bonding. In: Shaik S, Frenking G (eds) The chemical bond: fundamental aspects of chemical bonding, vol 1. Wiley, Darmstadt, pp 233–70

  10. Melin J, Ayers PW, Ortiz JV (2005) The electron-propagator approach to conceptual density-functional theory. J Chem Sci 117:387–400

    Article  CAS  Google Scholar 

  11. Ayers PW, Melin J (2007) Computing the Fukui function from ab initio quantum chemistry: approaches based on the extended Koopmans' theorem. Theor Chem Acc 117:371–81

    Article  CAS  Google Scholar 

  12. Ayers PW, Morrison RC, Roy RK (2002) Variational principles for describing chemical reactions: condensed reactivity indices. J Chem Phys 116:8731–44

  13. Ayers PW (2008) The continuity of the energy and other molecular properties with respect to the number of electrons. J Math Chem 43:285–303

    Article  CAS  Google Scholar 

  14. Parr RG, Yang WT (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–50

    Article  CAS  Google Scholar 

  15. Yang WT, Parr RG, Pucci R (1984) Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys 81:2862–3

  16. Ayers PW, Levy M (2000) Perspective on “Density functional approach to the frontier-electron theory of chemical reactivity” by Parr RG, Yang W (1984). Theor Chem Acc 103:353–60

  17. Ayers PW, Yang WT, Bartolotti LJ (2009) Fukui function. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton, pp 255–67

  18. Yang WT, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–11

    Article  CAS  Google Scholar 

  19. Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge nor frontier-orbital controlled. I. Theory and derivation of a general-purpose reactivity indicator. J Chem Theory Comput 3:358–74

    Article  CAS  Google Scholar 

  20. Anderson JSM, Ayers PW (2007) Predicting the reactivity of ambidentate nucleophiles and electrophiles using a single, general-purpose, reactivity indicator. PCCP 9:2371–8

    Article  CAS  Google Scholar 

  21. Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor frontier-orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails. J Chem Theory Comput 3:375–89

    Article  CAS  Google Scholar 

  22. Klopman G (1968) Chemical reactivity and the concept of charge and frontier-controlled reactions. J Am Chem Soc 90:223–34

    Article  CAS  Google Scholar 

  23. Bartolotti LJ, Ayers PW (2005) An example where orbital relaxation is an important contribution to the Fukui function. J Phys Chem A 109:1146–51

    Article  CAS  Google Scholar 

  24. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107

  25. Fuentealba P, Parr RG (1991) Higher-order derivatives in density-functional theory, especially the hardness derivative. J Chem Phys 94:5559–64

    Article  CAS  Google Scholar 

  26. Senet P (1996) Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J Chem Phys 105:6471–89

    Article  CAS  Google Scholar 

  27. Cardenas C, Echegaray E, Chakraborty D, Anderson JSM, Ayers PW (2009) Relationships between third-order reactivity indicators in chemical density-functional theory. J Chem Phys 130:244105

    Article  Google Scholar 

  28. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–12

    Article  CAS  Google Scholar 

  29. De Proft F, Ayers PW, Fias S, Geerlings P (2006) Woodward–Hoffmann rules in conceptual density functional theory: initial hardness response and transition state hardness. J Chem Phys 125:214101

  30. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Understanding the Woodward–Hoffmann rules using changes in the electron density. Eur J Chem 13:8240–7

  31. Ayers PW, Parr RG (2008) Beyond electronegativity and local hardness: higher-order equalization criteria for determination of a ground-state electron density. J Chem Phys 129:054111

  32. Geerlings P, De Proft F (2008) Conceptual DFT: the chemical relevance of higher response functions. PCCP 10:3028–42

    Article  CAS  Google Scholar 

  33. Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161–90

    Article  CAS  Google Scholar 

  34. Berkowitz M (1987) Density functional-approach to frontier controlled reactions. J Am Chem Soc 109:4823–5

    Article  CAS  Google Scholar 

  35. Cardenas C, Tiznado W, Ayers PW, Fuentealba P (2011) The Fukui potential and the capacity of charge and the global hardness of atoms. J Phys Chem A 115:2325–31

  36. Cardenas C (2011) The Fukui potential is a measure of the chemical hardness. Chem Phys Lett 513:127–9

    Article  CAS  Google Scholar 

  37. Sjoberg P, Politzer P (1990) Use of the electrostatic potential at the molecular-surface to interpret and predict nucleophilic processes. J Phys Chem 94:3959–61

    Article  CAS  Google Scholar 

  38. Gadre SR, Kulkarni SA, Shrivastava IH (1992) Molecular electrostatic potentials—a topographical study. J Chem Phys 96:5253–60

  39. Murray JS, Sen K (eds)(1996) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam

  40. Politzer P, Murray JS (2009) The electrostatic potential as a guide to molecular interactive behavior. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, pp 243–54

  41. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–51

    Article  CAS  Google Scholar 

  42. Bulat FA, Chamorro E, Fuentealba P, Toro-Labbé A (2004) Condensation of frontier molecular orbital Fukui functions. J Phys Chem A 108:342–9

    Article  CAS  Google Scholar 

  43. Chamorro E, Perez P (2005) Condensed-to-atoms electronic Fukui functions within the framework of spin-polarized density-functional theory. J Chem Phys 123:114107

    Article  Google Scholar 

  44. Tiznado W, Chamorro E, Contreras R, Fuentealba P (2005) Comparison among four different ways to condense the Fukui function. J Phys Chem A 109:3220–4

    Article  CAS  Google Scholar 

  45. Bultinck P, Fias S, Alsenoy CV, Ayers PW, Carbó-Dorca R (2007) Critical thoughts on computing atom condensed Fukui functions. J Chem Phys 127:034102

    Article  Google Scholar 

  46. Parr RG, Ayers PW, Nalewajski RF (2005) What is an atom in a molecule? J Phys Chem A 109:3957–9

    Article  CAS  Google Scholar 

  47. Matta CF, Bader RFW (2006) An experimentalist's reply to “What is an atom in a molecule?”. J Phys Chem A 110:6365–71

  48. Ayers PW, Boyd RJ, Patrick B, Caffarel M, Carbo-Dorca R, Causa M et al (2015) Six questions on topology in theoretical chemistry. Comput Theor Chem 1053:2–16

    Article  CAS  Google Scholar 

  49. Cardenas C, Ayers PW, Cedillo A (2011) Reactivity indicators for degenerate states in the density-functional theoretic chemical reactivity theory. J Chem Phys 134:174103

    Article  Google Scholar 

  50. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2013) Atomic charges and the electrostatic potential are ill-defined in degenerate ground states. J Chem Theory Comput 9:4779–88

  51. Bultinck P, Cardenas C, Fuentealba P, Johnson PA, Ayers PW (2014) How to compute the Fukui matrix and function for systems with (quasi-)degenerate states. J Chem Theory Comput 10:202–10

  52. Anderson JSM, Liu YL, Thomson JW, Ayers PW (2010) Predicting the quality of leaving groups in organic chemistry: tests against experimental data. J Mol Struct THEOCHEM 943:168–77

  53. Anderson JSM, Ayers PW (2014) Resolving the nature of the reactive sites of phenylsulfinate (PhSO2 ) with a single general-purpose reactivity indicator. Comput Theor Chem 1043:1–4

  54. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–7

  55. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–9

  56. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–100

  57. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular-orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–4

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09, revision A.1. Gaussian Inc., Wallingford CT

  59. Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials—the need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–73

  60. Um IH, Hong JY, Kim JJ, Chae OM, Bae SK (2003) Regioselectivity and the nature of the reaction mechanism in nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzenesulfonates with primary amines. J Org Chem 68:5180–5

    Article  CAS  Google Scholar 

  61. Abramov MA, Toppet S, Dehaen W (2002) Regiospecific nucleophilic substitution of fluorine in fused tetrafluoroquinolines with N- and O-nucleophiles. J Chem Res Solid 8:357–8

  62. Fort Y, Rodrigues AL (2003) First regioselective ortho-lithiation induced by a 2-chloropyridyl group complexation. J Org Chem 68:4918–22

    Article  CAS  Google Scholar 

  63. Liu SB (2007) Steric effect: a quantitative description from density functional theory. J Chem Phys 126:244103

  64. Liu SB, Govind N (2008) Toward understanding the nature of internal rotation barriers with a new energy partition scheme: ethane and n-butane. J Phys Chem A 112:6690–9

  65. Torrent-Sucarrat M, Liu SB, De Proft F (2009) Steric effect: partitioning in atomic and functional group contributions. J Phys Chem A 113:3698–702

  66. Liu SB, Hu H, Pederset LG (2010) Steric, quantum, and electrostatic effects on S(N)2 reaction barriers in gas phase. J Phys Chem A 114:5913–8

  67. Esquivel RO, Liu SB, Angulo JC, Dehesa JS, Antolin J, Molina-Espiritu M (2011) Fisher information and steric effect: study of the internal rotation barrier of ethane. J Phys Chem A 115:4406–15

  68. Huang Y, Zhong AG, Yang QS, Liu SB (2011) Origin of anomeric effect: a density functional steric analysis. J Chem Phys 134:084103

  69. Wu Q, Ayers PW, Zhang YK (2009) Density-based energy decomposition analysis for intermolecular interactions with variationally determined intermediate state energies. J Chem Phys 131:164112

    Article  Google Scholar 

Download references

Acknowledgments

PWA and JSMA acknowledge funding from NSERC and computational resources from Compute Canada. PWA, JM, and JSMA would like to thank Sharcnet for computational resources. JSMA would like to thank his FPR fellowship from RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. M. Anderson.

Ethics declarations

The authors declare no conflicts of interest and that there are no potential ethical breaches in this purely computational work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, J.S.M., Melin, J. & Ayers, P.W. Using the general-purpose reactivity indicator: challenging examples. J Mol Model 22, 57 (2016). https://doi.org/10.1007/s00894-016-2910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2910-7

Keywords

Navigation