Skip to main content
Log in

Understanding the thermal [1s,5s] hydrogen shift isomerization of ocimene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

α-Ocimene, β-ocimenes and alloocimenes are isomeric monoterpenes occurring naturally as oils within several plants and fruits. These thermally unstable compounds are employed in the pharmaceutical and fine-chemicals industries due to their natural plant defense properties and pleasant odors. In this work, and in the context of a recent revival in attention on the subject, we provide new theoretical insights concerning the nature of the electronic reorganization driving the decomposition of cis-β-ocimene to alloocimene. Our findings support the experimental proposal of a rearrangement via a six-membered cyclic transition state in a one-step concerted and highly synchronic process.

Thermal isomerization of ocimene; two transition structures are feasible considering the relative position (equatorial or axial) of the bulky isobutenyl group at carbon C5

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hakola H, Rinne J, Laurila T (1998) The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmos Environ 32:1825

    Article  CAS  Google Scholar 

  2. Buttery RG, Kamm JA, Ling LC (1984) Volatile components of red-clover leaves, flowers, and seed pods—possible insect attractants. J Agric Food Chem 32:254

    Article  CAS  Google Scholar 

  3. Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Sharkey TD (1996) Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci USA 93:9966. doi:10.1073/pnas.93.18.9966

    Article  CAS  Google Scholar 

  4. Kilic A, Hafizoglu H, Kollmannsberger H, Nitz S (2004) Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. J Agric Food Chem 52:1601. doi:10.1021/jf0306237

    Article  CAS  Google Scholar 

  5. Chagonda LS, Makanda CD, Chalchat JC (2000) The essential oils of Ocimum canum Sims (basilic camphor) and Ocimum urticifolia Roth from Zimbabwe Flav Frag J 15:23. Doi: 10.1002/(sici)1099-1026 (200001/02)15:1<23::aid-ffj866>3.0.co;2-w

  6. Bell AA, Stipanovic RD, Obrien DH, Fryxell PA (1978) Sesquiterpenoid aldehyde quinones and derivatives in pigment glands of gossypium. Phytochemistry 17:1297. doi:10.1016/s0031-9422(00)94578-3

    Article  CAS  Google Scholar 

  7. Ouattara ZA, Boti JB, Attioua KB, Ahibo AC, Casanova J, Tomi F, Bighelli A (2013) Chemical variability of Cleistopholis patens (Benth.) Engl. et diels leaf oil from Ivory Coast. Chem Biodiversity 10:2053. doi: 10.1002/cbdv.201300076

  8. Ozawa R, Shiojiri K, Kishimoto K, Matsui K, Arimura G-i, Urashimo S, Nishioka T, Takabayashi J (2013) Cytosolic LOX overexpression in Arabidopsis enhances the attractiveness of parasitic wasps in response to herbivory and incidences of parasitism. J Plant Int 8:207

    CAS  Google Scholar 

  9. Poelman EH (2013) New synthesis: volatiles bring out the animal in plants. J Chem Ecol 39:1055. doi:10.1007/s10886-013-0330-z

    Article  CAS  Google Scholar 

  10. Valente J, Zuzarte M, Goncalves MJ, Lopes MC, Cavaleiro C, Salgueiro L, Cruz MT (2013) Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. Essential Oil Food Chem Toxicol 62:349. doi:10.1016/j.fct.2013.08.083

    Article  CAS  Google Scholar 

  11. Hoffmann T, Odum JR, Bowman F, Collins D, Klockow D, Flagan RC, Seinfeld JH (1997) Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J Atmos Chem 26:189. doi:10.1023/a:1005734301837

    Article  CAS  Google Scholar 

  12. Dicke M, Vanbeek TA, Posthumus MA, Bendom N, Vanbokhoven H, Degroot AE (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions—involvement of host plant in its production. J Chem Ecol 16:381. doi:10.1007/bf01021772

    Article  CAS  Google Scholar 

  13. Griffin RJ, Cocker DR, Flagan RC, Seinfeld JH (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons. J Geophys Res-Atmos 104:3555. doi:10.1029/1998jd100049

    Article  CAS  Google Scholar 

  14. Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1. doi:10.1663/0006-8101

    Article  Google Scholar 

  15. Atkinson R, Aschmann SM, Arey J, Shorees B (1992) Formation of oh radicals in the gas-phase reactions of O3 with a series of terpenes. J Geophys Res-Atmos 97:6065

    Article  CAS  Google Scholar 

  16. Pare PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161

    CAS  Google Scholar 

  17. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329. doi:10.1073/pnas.160241697

    Article  CAS  Google Scholar 

  18. He JD, Gong Y, Zhao WT, Tang XY, Qi X (2013) A comparative study on the gas-phase and liquid-phase thermal isomerization reaction of alpha-pinene. J Phys Org Chem 26:15. doi:10.1002/poc.3011

    CAS  Google Scholar 

  19. Stolle A, Ondruschka B, Bonrath W (2007) Comprehensive kinetic and mechanistic considerations for the gas-phase behaviour of pinane-type compounds Eur J Org Chem:2310. doi: 10.1002/ejoc.200601098

  20. Stolle A, Ondruschka B, Findeisen M (2008) Mechanistic and kinetic insights into the thermally induced rearrangement of alpha-pinene. J Org Chem 73:8228. doi:10.1021/jo8012995

    Article  CAS  Google Scholar 

  21. He J, Xie M, Tang X, Qi X (2012) Kinetic and mechanistic study on the thermal isomerization of ocimene in the liquid phase. J Phys Org Chem 25:373. doi:10.1002/poc.1925

    Google Scholar 

  22. Sasaki T, Eguchi S, Yamada H (1971) Thermal 1,5-hydrogen migration in cis-b-ocimene (1). Tetrahedron Lett 2:99

    Article  Google Scholar 

  23. Hawkins JE, Hunt HG (1953) The preparation of ocimene from alpha-pinene. J Am Chem Soc 73:5379

    Article  Google Scholar 

  24. Hawkins JE, Burris WA (1959) Ocimene. J Org Chem 24:1507

    Article  CAS  Google Scholar 

  25. Hunt HG, Hawkins JE (1950) The rates of the thermal isomerization of alpha-pinene and beta-pinene in the liquid phase. J Am Chem Soc 72:5618

    Article  CAS  Google Scholar 

  26. Wolinsky J, Chollar B, Baird MD (1962) Thermal rearrangement of 1,3-dienes. J Am Chem Soc 84:2775

    Article  CAS  Google Scholar 

  27. Woodward RB, Hoffmann R (1965) Selection rules for sigmatropic reactions. J Am Chem Soc 87:2511

    Article  Google Scholar 

  28. Woodward RB, Hoffmann R (1969) The conservation of orbital symmetry. Angew Chem Int Ed Engl 8:781

    Article  CAS  Google Scholar 

  29. Stolle A, Ondruschka B, Hopf H (2009) Thermal rearrangements of monoterpenes and monoterpenoids. Helv Chim Acta 92:1673

    Article  CAS  Google Scholar 

  30. Perez P, Chamorro E (2011) Theoretical analysis of substituted diels - alder reagents to determine the polar or non polar character of the reaction. Lett Org Chem 8:88. doi:10.2174/157017811794697520

    Article  CAS  Google Scholar 

  31. Domingo LR, Chamorro E, Perez P (2010) Understanding the mechanism of non-polar Diels-Alder reactions. A comparative ELF analysis of concerted and stepwise diradical mechanisms. Org Biomol Chem 8:5495. doi:10.1039/c0ob00563k

    Article  CAS  Google Scholar 

  32. Domingo LR, Chamorro E, Perez P (2010) Understanding the high reactivity of the azomethine ylides in 3+2 cycloaddition reactions. Lett Org Chem 7:432

    Article  CAS  Google Scholar 

  33. Chamorro E, Notario R, Santos JC, Perez P (2007) A theoretical scale for pericyclic and pseudopericyclic reactions. Chem Phys Lett 443:136. doi:10.1016/j.cplett.2007.06.025

    CAS  Google Scholar 

  34. Cardenas C, Chamorro E, Notario R (2005) Nature of bonding in the cyclization reactions of (2-ethynylphenyl) triazene and 2-ethynylstyrene. J Phys Chem A 109:4352

    CAS  Google Scholar 

  35. Chamorro E, Fuentealba P, Savin A (2003) Electron probability distribution in AIM and ELF basins. J Comput Chem 24:496. doi:10.1002/jcc.10242

    Article  CAS  Google Scholar 

  36. Chamorro E (2003) The nature of bonding in pericyclic and pseudopericyclic transition states: thermal chelotropic decarbonylations. J Chem Phys 118:8687. doi:10.1063/1.1566740

    CAS  Google Scholar 

  37. Chamorro E, Santos JC, Gomez B, Contreras R, Fuentealba P (2002) The bonding nature of some simple sigmatropic transition states from the topological analysis of the electron localization function. J Phys Chem A 106:11533. doi:10.1021/jp025958q

    CAS  Google Scholar 

  38. Chamorro E, Santos JC, Gomez B, Contreras R, Fuentealba P (2001) Topological analysis of the electron localization function applied to the study of the 1,3 sigmatropic shift of fluorine in 3-fluorpropene. J Chem Phys 114:23

    CAS  Google Scholar 

  39. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364

    Google Scholar 

  40. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157. doi:10.1021/ar700111a

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr.;, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi MR, N.;, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Wallingford, CT

  42. Hratchian HP, Schlegel HB (2005) Chapter 10—Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In: Dykstra CE, Frenking G, Kim KS, Scuseria G (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam

    Google Scholar 

  43. Hratchian HP, Schlegel HB (2005) Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method. J Chem Theory Comput 1:61. doi:10.1021/ct0499783

    CAS  Google Scholar 

  44. Fukui K (1981) The path of chemical-reactions—the IRC approach. Acc Chem Res 14:363. doi:10.1021/ar00072a001

    Article  CAS  Google Scholar 

  45. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  46. Weinhold F, Landis CR (2005) Book valency and bonding. A natural bond orbital donor-acceptor perspective. Cambridge University Press.

  47. Savin A, Nesper R, Wengert S, Fassler TF (1997) ELF: the electron localization function. Angew Chem Int Ed 36:1809

    Google Scholar 

  48. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74:1088. doi:10.1139/v96-122

    Article  CAS  Google Scholar 

  49. Silvi B, Savin A (1994) Classification of chemical-bonds based on topological analysis of electron localization functions. Nature 371:683. doi:10.1038/371683a0

    Article  CAS  Google Scholar 

  50. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597. doi:10.1016/s0097-8485(99)00039-x

    Article  CAS  Google Scholar 

  51. Moyano A, Pericas MA, Valenti E (1989) A theoretical-study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (beta-lactones). J Org Chem 54:573. doi:10.1021/jo00264a014

    Article  CAS  Google Scholar 

  52. Notario R, Quijano J, Quijano JC, Gutierrez LP, Suarez WA, Sanchez C, Leon LA, Chamorro E (2002) Theoretical study of the thermolysis reaction of ethyl beta-hydroxycarboxylates in the gas phase. J Phys Chem A 106:4377. doi:10.1021/jp020071f

    CAS  Google Scholar 

  53. Quijano J, Notario R, Chamorro E, Leon LA, Sanchez C, Alarcon G, Quijano JC, Chuchani G (2002) Theoretical study of the gas-phase decomposition of neutral alpha-amino acid ethyl esters. Part 1. The elimination of N,N-dimethylglycine ethyl ester and ethyl 1-piperidineacetate. J Phys Org Chem 15:413. doi:10.1002/poc.516

    CAS  Google Scholar 

  54. Leon LA, Notario R, Quijano J, Velez E, Sanchez C, Quijano JC, Al-Awadi N (2003) A density functional theory study of the gas-phase elimination reactions of 4-arylideneimino-1,2,4-triazol-3(2H)-ones and their 3(2H)-thione analogues. Theor Chem Acc 110:387. doi:10.1007/s00214-003-0492-9

    Article  CAS  Google Scholar 

  55. Notario R, Quijano J, Leon LA, Sanchez C, Quijano JC, Alarcon G, Chamorro E, Chuchani G (2003) Theoretical study of the gas-phase decomposition of neutral alpha-amino acid ethyl ethyl picolinate and ethyl esters. Part 2. Elimination of ethyl picolinate and ethyl 1-methylpipecolinate. J Phys Org Chem 16:166. doi:10.1002/poc.590

    CAS  Google Scholar 

  56. Quijano C, Notario R, Quijano J, Saanchez C, Leon LA, Velez E (2003) Theoretical study of the gas-phase thermolysis reaction of alkyl (ethyl, isopropyl, and tert-butyl) N,N-dimethylcarbamates and N,N-diethylcarbamates. Theor Chem Acc 110:377. doi:10.1007/s00214-003-0491-x

    Article  CAS  Google Scholar 

  57. Murillo J, Henao D, Velez E, Castano C, Quijano J, Gaviria J, Zapata E (2012) Thermal decomposition of 4-hydroxy-2-butanone in m-xylene solution: experimental and computational study. Int J Chem Kinet 44:407. doi:10.1002/kin.20591

    Article  CAS  Google Scholar 

  58. Toro-Labbe A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential and hardness. J Phys Chem A 103:4398. doi:10.1021/jp984187g

    CAS  Google Scholar 

  59. Bulat FA, Toro-Labbe A (2003) An extension of the Hammond postulate. Structural effects on the classification of chemical reactions. J Phys Chem A 107:3987. doi:10.1021/jp022025l

    CAS  Google Scholar 

  60. Toro-Labbe A, Gutierrerez-Oliva S, Murray JS, Politzer P (2007) A new perspective on chemical and physical processes: the reaction force. Mol Phys 105:2619. doi:10.1080/00268970701604663

    Article  CAS  Google Scholar 

  61. Echegaray E, Toro-Labbe A (2008) Reaction electronic flux: a new concept to get insights into reaction mechanisms. Study of model symmetric nucleophilic substitutions. J Phys Chem A 112:11801. doi:10.1021/jp805225e

    CAS  Google Scholar 

  62. Martinez J, Toro-Labbe A (2009) The reaction force. A scalar property to characterize reaction mechanisms. J Math Chem 45:911. doi:10.1007/s10910-008-9478-0

    Article  CAS  Google Scholar 

  63. Toro-Labbe A, Gutierrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Mod 15:707. doi:10.1007/s00894-008-0431-8

    Article  CAS  Google Scholar 

  64. Politzer P, Reimers JR, Murray JS, Toro-Labbe A (2010) Reaction force and its link to diabatic analysis: a unifying approach to analyzing chemical reactions. J Phys Chem Lett 1:2858. doi:10.1021/jz101135y

    CAS  Google Scholar 

  65. Yepes D, Donoso-Tauda O, Perez P, Murray JS, Politzer P, Jaque P (2013) The reaction force constant as an indicator of synchronicity/nonsynchronicity in 4 + 2 cycloaddition processes. Phys Chem Chem Phys 15:7311. doi:10.1039/c3cp44197k

    Article  CAS  Google Scholar 

  66. Yepes D, Murray JS, Santos JC, Toro-Labbe A, Politzer P, Jaque P (2013) Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. J Mol Mod 19:2689. doi:10.1007/s00894-012-1475-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the continuous support provided by Fondecyt (Chile) grant numbers 1140343 (EC), and 11130589 (MD-N), the Millennium Science Initiative Nucleus No. 120082 (Chile), and the Universidad Nacional de Colombia grant 201010011033-DIME 2012 (Modalidad 2). E.C. thanks the Universidad Andres Bello (UNAB) for continuous support through research grant No. DI-219-12/N (Núcleo CIMFQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Chamorro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Optimized Cartesian coordinates for reactant and products corresponding to the thermal rearrangement of ocimene to alloocimene via TS1-e, and TS1-a, obtained at the M05-2X/6-31G(d) level of theory. This material is available in Online Resource 1 (ESM_1.pdf). (DOCX 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamorro, E., Ruiz, P., Quijano, J. et al. Understanding the thermal [1s,5s] hydrogen shift isomerization of ocimene. J Mol Model 20, 2390 (2014). https://doi.org/10.1007/s00894-014-2390-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2390-6

Keywords

Navigation