Skip to main content

Advertisement

Log in

Spectroscopic and quantum mechanical investigation of N,N′-bisarylmalonamides: solvent and structural effects

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The UV absorption spectra of ten N,N′-bisarylmalonamides have been recorded in the range 200–400 nm in a set of selected solvents. The solute–solvent interactions have been analyzed on the basis of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The effects of substituents on the absorption spectra have been interpreted by correlating absorption frequencies with Hammett substituent constants. Furthermore, the experimental findings have been interpreted using the DFT CAM-B3LYP/6–311+G(d,p) method. Electronic energies have been calculated using the same method in combination with the implicit solvation model (conductor-like polarizable continuum model, CPCM) as well as with the explicit addition of two molecules of solvent.

Relationship between v max and σ p+ for the investigated N,N'-bisarylmalonamides along with the optimized geometries for N,N'-bisphenylmalonamide (4) with intramolecular H-bond (I), with intermolecular bonds with two explicit ethanol (II) and DMSO (III) molecules

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In Gaussian, the WP04 functional is invoked by specifying the BLYP keyword and adding iop(3/76 = 1000001189, 3/77 = 0961409999, 3/78 = 0000109999) to the keyword line.

  2. The 6–31G(d,p) u + 1s[H] basis set is 6–31G(d,p) basis set with the augmented 1s basis function for hydrogen atoms only (for details, see [25]).

References

  1. Chorev M, Shavitz R, Goodman M, Minick S, Guillemin R (1979) Partially modified retro-inverso-enkephalinamides: topochemical long-acting analogs in vitro and in vivo. Science 204:1210–1212

    Article  CAS  Google Scholar 

  2. Berman J, Goodman M (1984) Synthesis of cyclic and acyclic partial retro-inverso modified enkephalins. Int J Pept Protein Res 23:610–620

    Article  CAS  Google Scholar 

  3. Chaturvedi N, Goodman M, Bowers C (1981) Topochemically related hormone structures: synthesis of partial retro-inverso analogs of LH-RH. Int J Pept Protein Res 17:72–88

    Article  CAS  Google Scholar 

  4. Gomez EJ, Vitoux B, Marraud M, Sakarellos C, El-Masdouri L, Aubry A (1989) Conformational perturbations in retro-analogs of the tBuCO-Ala-Gly-NHiPr dipeptide. Crystal structure of the retro-dipeptide with a reversed Ala-Gly amide bond. Int J Pept Protein Res 34:480–486

  5. Dado GP, Desper JM, Holmgren SK, Rito CJ, Gellman SH (1992) Effects of covalent modifications on the solid-state folding and packing of N-malonylglycine derivatives. J Am Chem Soc 114:4834–4843

  6. D’Oca CR, Coelho T, Marinho TG, Hack CR, Duarte RC, Silva DPA, D’Oca MG (2010) Synthesis and antituberculosis activity of new fatty acid amides. Bioorg Med Chem Lett 20:5255–5257

    Article  Google Scholar 

  7. Virsodia V, Pissurlenkar RR, Manvar D, Dholakia C, Adlakha P, Shah A, Coutinho EC (2008) Synthesis, screening for antitubercular activity and 3D-QSAR studies of substituted N-phenyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carbox-amides. Eur J Med Chem 43:2103–2115

    Article  CAS  Google Scholar 

  8. Amini M, Navidpour L, Shafiee A (2008) Synthesis and antitubercular activity of new N,N-diaryl-4-(4,5-dichloroimidazole-2-yl)-1,4-dihydro-2,6-dimethyl-3,5-pyridine dicarboxamides. DARU J Pharm Sci 16:9–12

  9. Darling C, Ala A (1985) US Patent 4537781

  10. Bonse G, Blank H, Brandes W, Paul V (1981) US Patent 4279921

  11. Nagashima S, Akamatsu S, Kawazone S, Ogami T, Matasumoto Y, Okada M, Suzuki K, Tsukamoto S (2001) Novel malonamide derivatives as αvβ3 antagonists. Syntheses and evaluation of 3-(3-indolin-1-yl-3-oxopropanoyl)aminopropanoic acids on vitronectin Interaction with αvβ3. Chem Pharm Bull 49:1420–1432

  12. Sechi M, Azzena U, Delussu MP, Dallocchio R, Dessì A, Cosseddu A, Pala N, Neamati N (2008) Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors. Molecules 13:2442–2461

    Article  CAS  Google Scholar 

  13. Carter P (2008) US Patent 7468440 B2

  14. Wang L, Guo C, Pan G, Guo Q (2012) Synthesis of phenylazo-N,N-diphenylpropanediamide. Adv Mater Res 396–398:3–7

  15. Katagi T, Aoki M, Kashiwagi M, Ohata M, Kohno S, Murata T, Inoi T (1985) Syntheses and antiinflammatory activity of malonamic acid, malonamate and malonamide derivatives of some heterocyclic compounds. Chem Pharm Bull 33:4878–4888

    Article  CAS  Google Scholar 

  16. Moradi Rufchahi EO, Pouramir H, Yazdanbakhsh MR, Yousefi H, Bagheri M, Rassa M (2013) Novel azo dyes derived from 8-methyl-4-hydroxyl-2-quinolone: synthesis, UV–vis studies and biological activity. Chin Chem Lett 24:425–428

    Article  CAS  Google Scholar 

  17. Bauer M, Rollberg A, Barth A, Spange S (2008) Differentiating between dipolarity and polarizability effects of solvents using the solvatochromism of barbiturate dyes. Eur J Org Chem 26:4475–4481

    Article  Google Scholar 

  18. Homocianu M, Airinei A, Dorohoi DO, Olariu I, Fifere N (2011) Solvatochromic effects in the UV/vis absorption spectra of some pyridazinium ylides. Spectrochim Acta A 82:355–359

    Article  CAS  Google Scholar 

  19. Alimmari A, Božić B, Marinković A, Mijin D, Ušćumlić G (2012) Solvent and structural effects on the UV–vis absorption spectra of some 4,6-disubstituted-3-cyano-2-pyridones. J Solut Chem 41:1825–1835

    Article  CAS  Google Scholar 

  20. Vennerstrom JL, Holmes TJ (1987) Prostaglandin-H synthase inhibition by malonamides. Ring-opened analogues of phenylbutazone. J Med Chem 30:434–437

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision C.01. Gaussian, Inc., Wallingford

  22. Yanai T, Tew D, Handy N (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    CAS  Google Scholar 

  23. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  24. Jain R, Bally T, Rablen PR (2009) Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J Org Chem 74:4017–4023

    Article  CAS  Google Scholar 

  25. Bally T, Rablen PR (2011) Quantum-chemical simulation of 1H NMR spectra. 2. Comparison of DFT-based procedures for computing proton–proton coupling constants in organic molecules. J Org Chem 76:4818–4830

  26. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. I. A gauge-invariant LCAO (linear combination of atomic orbitals) method for NMR chemical shifts. Mol Phys 27:789–807

  27. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO version 3.1. TCI, University of Wisconsin, Madison

  28. Dennington R, Keith T, Millam J (2009) GaussView, version 5.0.9. Semichem Inc., Shawnee Mission

  29. Reichardt C (2003) Solvent and solvent effects in organic chemisty, 3rd edn. Wiley, Weinheim

    Google Scholar 

  30. Kamlet M, Abboud J, Taft R (1981) An examination of linear solvation energy relationships. Prog Phys Org Chem 13:485–630

    Article  CAS  Google Scholar 

  31. Kamlet M, Abboud J, Abraham M, Taft R (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  32. Hammett L (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  33. Brown H, Okamoto Y (1958) Electrophilic substituent constants. J Am Chem Soc 80:4979–4987

    Article  CAS  Google Scholar 

  34. Charton M (1981) Electrical effect substituent constants for correlation analysis. Prog Phys Org Chem 13:119–251

    Article  CAS  Google Scholar 

  35. Emsley J (1984) The structure and hydrogen bonding of the β-diketones. Struct Bond (Berlin) 57:147–191

    Article  CAS  Google Scholar 

  36. Tereshko V, Navarro E, Puiggali J, Subirana JA (1993) Structures of two malonamide derivatives as models of nylons n,3 and of peptidomimetic compounds. Macromolecules 26:7024–7028

  37. Gowda BT, Tokarčík M, Rodrigues VZ, Kožíšek J, Fuess H (2010) N,N′-bis(3-methyl­phen­yl)propane­diamide. Acta Crystallogr E66:o3037

  38. Rodrigues VZ, Foro S, Gowda BT (2011) N,N′-bis(3-chlorophenyl)malonamide. Acta Crystallogr E67:o2278

  39. Allouche AR, Gabedit R (2011) A graphical user interface for computational chemistry software. J Comput Chem 32:174–182

    Article  CAS  Google Scholar 

  40. Cai ZL, Crossley MJ, Reimers JR, Kobayashi R, Amos RD (2006) Density-functional theory for charge-transfer: the nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J Phys Chem B 10:15624–15632

    Google Scholar 

  41. Aidas K, Møgelhøj A, Nilsson EJK, Johnson MS, Mikkelsen KV, Christiansen O, Söderhjelm P, Kongsted J (2008) On the performance of quantum chemical methods to predict solvatochromic effects. The case of acrolein in aqueous solution. J Chem Phys 128:194503–194515

    Google Scholar 

  42. Jacquemin D, Perpète EA, Scuseria GE, Ciofini I, Adamo C (2008) TD-DFT performance for the visible absorption spectra of organic dyes: conventional versus long-range hybrids. J Chem Theory Comput 4:123–135

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under grant nos. 172013, 172035, and III45007. VV and VZ are gratefully acknowledged for the use of the computer resources at Institute of Physics of the University of Belgrade, Serbia and the Institute of Chemistry of the Karl-Franzens University of Graz, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Ž. Mijin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 11692 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsovski, V.M., Božić, B.Đ., Mirković, J.M. et al. Spectroscopic and quantum mechanical investigation of N,N′-bisarylmalonamides: solvent and structural effects. J Mol Model 20, 2384 (2014). https://doi.org/10.1007/s00894-014-2384-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2384-4

Keywords

Navigation