Skip to main content
Log in

Tunable electronic properties of ultra-thin boron-carbon-nitrogen heteronanotubes for various compositions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A first-principles calculation was carried out to investigate the stability and electronic properties of ultra-thin Cx(BN)y heteronanotubes which were composed by joining pure CNT and BNNT segments with different composition and configurations. We found that the stability of Cx(BN)y heteronanotubes is increased with the increasing number of B and N atoms. In addition, all armchair (3,3) Cx|(BN)y heteronanotubes were found to be semiconductors with tunable energy gaps between 0.45 to 1.62 eV. Whereas zigzag (5,0) Cx|(BN)y heteronanotubes can be metal (y ≤ 4) or semiconductor (y > 4), and it is different from the relatively big zigzag Cx|(BN)y heteronanotubes which are always conductors. It indicates that the energy gap of (5,0) Cx|(BN)y heteronanotubes can be tuned by modifying the value of y. Further, zigzag (5,0) and armchair (3,3) C-BN heteronanotubes were found to be metal and semiconductor, respectively; but zigzag and armchair C-BN heteronanotubes with relatively big diameter are always semiconductor and conductor, respectively. Therefore, the electronic properties of ultra-thin Cx(BN)y heteronanotubes are abnormal when comparing with the relatively big ones.

Highlights

• The stability of Cx(BN)y heteronanotubes is increased with the increasing value of y.

• Zigzag (5,0) Cx|(BN)y heteronanotubes can change from metal (y ≤ 4) to semiconductor (y > 4) when the value of y increases from 1 to 7.

• The band gaps of armchair (3,3) Cx|(BN)y heteronanotubes increase from 0.45 to 1.62 eV when the value of y increases from 1 to 7.

• The electronic properties (energy gap) of Cx(BN)y heteronanotubes are tunable and different in comparison with the relatively big ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Politzer P, Murray JS, Lane P, Concha MC, Jin P, Peralta-Inga Z (2005) An unusual feature of end-substituted model carbon (6,0) nanotubes. J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  3. Ma F, Zhou Z-J, Li Z-R, Wu D, Li Y, Li Z-S (2010) Lithium salt of end-substituted nanotube: structure and large nonlinear optical property. Chem Phys Lett 488:182–186

    CAS  Google Scholar 

  4. Zurek E, Autschbach J (2004) Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotube. J Am Chem Soc 126:13079–13088

    Article  CAS  Google Scholar 

  5. Zurek E, Pickard CJ, Autschbach J (2008) Determining the diameter of functionalized single-walled carbon nanotubes with 13C NMR: a theoretical study. J Phys Chem C 112:9267–9271

    Article  CAS  Google Scholar 

  6. Wildöer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Article  Google Scholar 

  7. Odom TW, Huang JL, Kim P, Lieb CM (1998) Atomic structure and electronic proper ties of single- walled carbon nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  8. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band Gap of boron nitride nanotubes. Europhys Lett 28:335–340

    Article  Google Scholar 

  9. Xiang HJ, Yang JL, Hou JG, Zhu QS (2003) First-principles study of small-radius single- walled BN nanotubes. Phys Rev B 68:035427

    Article  Google Scholar 

  10. Zhao CY, Bando Y, Tan CC, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135:67–70

    Article  Google Scholar 

  11. Wang WL, Bai XD, Liu KH, Xu Z, Golberg D, Bando Y, Wang EG (2006) Direct synthesis of B-C-N single-walled nanotubes by bias-assisted Hot filament chemical vapor deposition. J Am Chem Soc 128:6530–6531

    Article  CAS  Google Scholar 

  12. Enouz S, Stéphan O, Cochon JL, Colliex C, Loiseau A (2007) C − BN patterned single- walled nanotubes synthesized by laser vaporization. Nano Lett 7:1856–1862

    Article  CAS  Google Scholar 

  13. Enouz-Védrenne S, Stéphan O, Glerup M, Cochon JL, Colliex C, Loiseau A (2008) Effect of the synthesis method on the distribution of C, B, and N elements in multiwall nanotubes: a spatially resolved electron energy loss spectroscopy study. J Phys Chem C 112:16422–16430

    Article  Google Scholar 

  14. Peyghan AA, Hadipour NL, Zargham B (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J Phys Chem C 117:2427–2432

    Article  Google Scholar 

  15. Pan H, Feng YP, Lin JY (2006) Ab initio study of single-wall BC2N nanotubes. Phys Rev B 74:045409

    Article  Google Scholar 

  16. Xiao HP, Zhang CX, Zhang KW, Sun LZ, Zhong JX (2013) Tunable differential conductance of single wall C/BN nanotube heterostructure. J Mol Model 19:2965–2969

    Article  CAS  Google Scholar 

  17. Saikia N, Deka RC (2012) First principles study on the boron-nitrogen domains segregated within (5,5) and (8,0) single-wall carbon nanotubes: formation energy, electronic structure and reactivity. Comput Theor Chem 996:11–20

    Article  CAS  Google Scholar 

  18. Du A, Chen Y, Zhu ZH, Lu GQ, Smith SC (2009) C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction byab initio density functional calculations. J Am Chem Soc 131:1682–1683

    Article  CAS  Google Scholar 

  19. Guo CS, Fan WJ, Chen ZH, Zhang RQ (2006) First-principles study of single-walled armchair Cx(BN)y nanotubes. Solid State Commun 137:549–552

    Article  CAS  Google Scholar 

  20. Zhao P, Liu DS, Chen G (2013) Effect of mono-vacancy on transport properties of zigzag carbon- and boron-nitride-nanotube heterostructures. Solid State Commun 160:13–16

    Article  CAS  Google Scholar 

  21. Wang P, Zhang CJ (2010) Doped ways of boron and nitrogen doped carbon nanotubes: a theoretical investigation. J Mol Struct Theochem 955:84–90

    Article  CAS  Google Scholar 

  22. Choi J, Kim YH, Chang KJ, Tománek D (2003) Itinerant ferromagnetism in heterostructured C/BN nanotubes. Phys Rev B 67:125421

    Article  Google Scholar 

  23. An W, Turner CH (2010) Linking carbon and boron-nitride nanotubes: heterojunction energetics and band Gap tuning. J Phys Chem Lett 1:2269–2673

    CAS  Google Scholar 

  24. Machado M, Kar T, Piquini P (2011) The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC2N nanotubes. Nanotechnology 22:205706

    Article  CAS  Google Scholar 

  25. Moore GE (1965) Cramming more components onto integrated circuits. Electron Mag 38:114–117

    Google Scholar 

  26. Popov VN (2004) Carbon naonotubes: properties and application. Mater Sci Eng R 43:61–102

    Article  Google Scholar 

  27. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter- and intramolecular logic gates. Nano Lett 1:453–456

    Article  CAS  Google Scholar 

  28. Bachtold A, Hadley P, Nakanisihi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  CAS  Google Scholar 

  29. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y, Philip Wong H-S, Mitra S (2013) Carbon nanotube computer. Nature 501:526–530

    Article  CAS  Google Scholar 

  30. Cabria I, Mintmire JW, White CT (2003) Metallic and semiconductor narrow carbon nanotubes. Phys Rev B 67:121406

    Article  Google Scholar 

  31. Sawada S, Hamada N (1992) Energetics of carbon nano-tubes. Solid State Commun 83:917–919

    Article  CAS  Google Scholar 

  32. Peng L-M, Zhang ZL, Xue ZQ, Wu QD, Gu ZN, Pettifor DG (2000) Stability of carbon nanotubes: how small can they be? Phys Rev Lett 85:3249–3252

    Article  CAS  Google Scholar 

  33. Qin LC, Zhao XL, Hirahara KR, Miyamoto Y, Ando Y, Iijima S (2000) The smallest carbon nanotube. Nature 408:50

    Article  CAS  Google Scholar 

  34. Wang N, Tang ZK, Li GD, Chen JS (2000) Single-walled 4 Å carbon nanotube arrays. Nature 408:50–51

    Article  CAS  Google Scholar 

  35. Hayashi T, Kim YA, Matoba T, Esaka M, Nishimura K, Tsukada T, Endo M, Dresselhaus MS (2003) Smallest freestanding single-walled carbon nanotube. Nano Lett 3:887–889

    Article  CAS  Google Scholar 

  36. Liu HJ, Chan CT (2002) Properties of 4 Å carbon nanotubes from first-principles calculations. Phys Rev B 66:115416

    Article  Google Scholar 

  37. Delley B (1990) An All-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    CAS  Google Scholar 

  38. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    CAS  Google Scholar 

  39. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron- Gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  40. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  41. Li Y-T, Chen T-C (2009) Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory. Nanotechnology 20:375705

    Article  Google Scholar 

  42. Nozaki H, Itoh S (1996) Structural stability of BC2N. J Phys Chem Solids 57:41–49

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of the Fujian Province of China (grant no. A0220001). We acknowledge the high-performance computing platform of South China Normal University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyi Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, G., Zhang, J. et al. Tunable electronic properties of ultra-thin boron-carbon-nitrogen heteronanotubes for various compositions. J Mol Model 20, 2371 (2014). https://doi.org/10.1007/s00894-014-2371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2371-9

Keywords

Navigation