Skip to main content
Log in

Substituent effects in 1-nitro-4-substituted bicyclo[2.2.2]octane derivatives: inductive or field effects?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Interactions between the NO2 group and 13 different substituents (BF2, BH2, CF3, CH3, CHO, CN, F, NH2, NMe2, NO2, NO, OH, OMe) were investigated computationally for bicyclo[2.2.2]octane (BCO) and benzene substituted at 1,4 and 1,3 positions in the ring. Three methods were employed to estimate the character and strength of the substituent effect: substituent effect stabilization energy (SESE), sigma/pi electron donor acceptor index (sEDA/pEDA) and substituent active region (cSAR) parameter. For the first time the sEDA/pEDA parameters were calculated not for the ring but for the NO2 group. All calculations were performed at the B3LYP/6-31G(d,p) level of theory. For 1,4 derivatives, a direct comparison of slopes of linear regressions between BCO and benzene reveals a much better transmission of the substituent effect in the latter. The ratio of slopes (benzene over BCO) is always larger than 4. It follows that the resonance effects, which are absent in the BCO, dominate in this case. For 1,3 derivatives, because of much lower correlation coefficients, estimated standard deviations (ESD) were used to calculate the ratio instead of the slopes. For these systems the ratio is much closer to the unity, which indicates that only the sigma/through space effects are present and they are of similar magnitude in benzene and BCO. It follows from natural population analysis (NPA) charges that the substituent effect in the studied systems is due mainly to through-space interactions.

What is the nature of the substituent effect

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Explanation: In our two recent publications the symbol qSAR was used for charge of Substituent Active Region. However, to avoid confusion with QSAR meaning Quantitative Structure Activity Relationships we decided to used the symbol cSAR instead.

References

  1. Hammett LP (1937) J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  2. Hammett LP (1935) Chem Rev 17:125

    Article  CAS  Google Scholar 

  3. Hammett LP (1940) Physical organic chemistry, 1st edn. McGraw-Hill, New York, pp 194–228

    Google Scholar 

  4. Jaffe HH (1953) Chem Rev 53:191

    Article  CAS  Google Scholar 

  5. Palm VA (1967) Osnovy kolichestvennnoy teoryi organitcheskikh soedinenii, Izd. Leningrad, Khimya

    Google Scholar 

  6. Exner O (1972) The Hammett equation—the present position. In: Chapman NB, Shorter J (eds) Advances in linear free energy relationships. Plenum, London, pp 1–69

  7. Johnson CD (1973) The Hammett equation. University Press, Cambridge

    Google Scholar 

  8. Charton M (1973) Progr Phys Org Chem 10:81

    CAS  Google Scholar 

  9. Shorter J (1991) Substituent effect parameters and models applied inorganic chemistry. In: Zalewski RI, Krygowski TM, Shorter J (eds) Similarity models in organic chemistry, biochemistry and related fields. Elsevier, Amsterdam, pp 77–148

  10. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  11. Krygowski TM, Stępień BT (2005) Chem Rev 105:3482

    Article  CAS  Google Scholar 

  12. Exner O, Bohm S (2006) Curr Org Chem 10:763

    Article  CAS  Google Scholar 

  13. Exner O (1978) Chapter 10. In: Chapman NB, Shorter J (eds) Correlation analysis in chemistry. Plenum, London

  14. Ehrenson S, Brownlee RTC, Taft RW (1973) Progr Phys Org Chem 10:1

    CAS  Google Scholar 

  15. Brown HC, Okamoto Y (1958) J Am Chem Soc 90:4979

    Article  Google Scholar 

  16. Wells PR (1968) Linear free energy relationships. Academic, London

    Google Scholar 

  17. Zuman P (1967) Substituent effects in organic polarography. Plenum, New York

    Google Scholar 

  18. Williams A (2003) Free energy relationships in organic and bio-organic chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  19. Ingold CK (1969) Structure and mechanism in organic chemistry, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  20. Roberts JD, Moreland WT (1953) J Am Chem Soc 75:2167

    Article  CAS  Google Scholar 

  21. Palecek J, Hlavaty J (1973) Coll Czech Chem Comm 38:1985

    Article  CAS  Google Scholar 

  22. Grob CA, Schlegeter MG (1974) Helv Chim Acta 57:509

    Article  CAS  Google Scholar 

  23. Taft RW, Lewis IC (1958) J Am Chem Soc 80:2436

    Article  CAS  Google Scholar 

  24. Taft RW, Lewis IC (1959) J Am Chem Soc 81:5343

    Article  CAS  Google Scholar 

  25. Taft WR, Price E, Fox IR, Lewis IC, Andersen KK, Davis GT (1963) J Am Chem Soc 85:709

    Article  CAS  Google Scholar 

  26. Holtz HD, Stock LM (1964) J Am Chem Soc 96:4555

    Google Scholar 

  27. Taft RW, Topsom RD (1987) Progr Phys Org Chem 16:1

    Article  Google Scholar 

  28. Charton M (1984) J Org Chem 49:1997

    Article  CAS  Google Scholar 

  29. Taylor PJ, Wait AR (1986) J Chem Soc Perkin 2:1765

    Article  Google Scholar 

  30. Adcock W, Anvia F, Butt G, Cook A, Duggan P, Grob CA, Marriott S, Rowe J, Taagapera M, Taft RW, Topsom RW (1991) J Phys Org Chem 4:353

    CAS  Google Scholar 

  31. Wiberg KB (2002) J Org Chem 67:4787

    Article  CAS  Google Scholar 

  32. Alkorta I, Griffiths MZ, Popelier PLA (2013) J Phys Org Chem 26:791

    CAS  Google Scholar 

  33. Exner O, Krygowski TM (1996) Chem Soc Rev 71.

  34. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  35. Oziminski WP, Dobrowolski JC (2009) J Phys Org Chem 22:769

    CAS  Google Scholar 

  36. Sadlej-Sosnowska N (2007) Pol J Chem 81:1123

    CAS  Google Scholar 

  37. Sadlej-Sosnowska N (2007) Chem Phys Lett 447:192

    CAS  Google Scholar 

  38. Krygowski TM, Sadlej-Sosnowska N (2011) Struct Chem 22:17

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  40. Pross A, Radom L, Taft RW (1980) J Org Chem 45:818

    Article  CAS  Google Scholar 

  41. Hehre WJ, Radom L, Schleyer PR, Pople AJ (1986) Ab initio molecular orbital theory. Wiley, New York, p 360

    Google Scholar 

  42. Snedecor GW, Cochran WG (1973) Statistical methods. Iowa State University Press, Ames

    Google Scholar 

Download references

Acknowledgments

A computational grant from the Wroclaw Centre for Networking and Supercomputing (WCSS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech P. Oziminski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krygowski, T.M., Oziminski, W.P. Substituent effects in 1-nitro-4-substituted bicyclo[2.2.2]octane derivatives: inductive or field effects?. J Mol Model 20, 2352 (2014). https://doi.org/10.1007/s00894-014-2352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2352-z

Keywords

Navigation