Skip to main content
Log in

Towards physical interpretation of Hammett constants: charge transferred between active regions of substituents and a functional group

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The charges transferred between substituents and two functional groups: nitroso and N,N-dimethylamine in disubstituted benzene rings, were calculated at the B3LYP/cc-pVDZ level, using Natural Population Analysis. They were compared with the charges transferred between active regions of the substituents and of the groups. The transferred charge was well correlated with the Hammett constants, but only when the charges were calculated for the corresponding active regions instead of being calculated for the substituents and functional groups themselves. The results were compared for substituents introduced at the para and meta position to the NO and N(CH3)2 groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hammett LP (1940) Physical organic chemistry. McGraw-Hill, New York, London

    Google Scholar 

  2. Jaffe HH (1953) Chem Rev 53:191

    Article  CAS  Google Scholar 

  3. Exner O (1972) In: Chapman NB, Shorter J (eds) Advances in linear free energy relationships. Plenum Press, London

    Google Scholar 

  4. Krygowski TM, Stępień BT (2005) Chem Rev 105:3482

    Article  CAS  Google Scholar 

  5. Smith MB, March J (2001) March’s advanced organic chemistry: reactions, mechanisms and structure, 5th edn. John Wiley & Sons, New York, pp 681–685

    Google Scholar 

  6. Johnson CD (1973) The Hammett equation. Cambridge University Press, Cambridge

    Google Scholar 

  7. Charton M (1973) Prog Phys Org Chem 10:81

    Article  CAS  Google Scholar 

  8. Gable KP, Zhuravlev FA (2002) J Am Chem Soc 124:3970

    Article  CAS  Google Scholar 

  9. Moss RA, Ma Y, Saunders RR (2002) J Am Chem Soc 124:13968

    Article  CAS  Google Scholar 

  10. Robiette R, Marchand-Brynaert J, Peeters D (2002) J Org Chem 67:6823

    Article  CAS  Google Scholar 

  11. Exner O, Böhm S (2002) J Org Chem 67:6320

    Article  CAS  Google Scholar 

  12. Ilieva S, Hadjieva B, Galabov B (2002) J Org Chem 67:6210

    Article  CAS  Google Scholar 

  13. Zhu W, Tan X, Shen J, Luo X, Cheng F, Mok PC, Ji R, Chen K, Jiang H (2003) J Phys Chem A 107:2296

    Article  CAS  Google Scholar 

  14. Song K-S, Liu L, Guo Q-X (2003) J Org Chem 68:262

    Article  CAS  Google Scholar 

  15. Bathelt CM, Ridder L, Mulholland AJ, Harvey JN (2003) J Am Chem Soc 125:15004

    Article  CAS  Google Scholar 

  16. Maurin P, Ibrahim-Ouali M, Parrain J-L, Santelli M (2003) J Mol Struct (Theochem) 637:91

    Article  CAS  Google Scholar 

  17. Exner O, Böhm S (2004) J Comput Chem 25:1979

    Article  CAS  Google Scholar 

  18. Galabov B, Cheshmedzhieva D, Ilieva S, Hadjieva B (2004) J Phys Chem A 108:11457

    Article  CAS  Google Scholar 

  19. Pratt DA, DiLabio GA, Mulder P, Ingold KU (2004) Acc Chem Res 37:334

    Article  CAS  Google Scholar 

  20. DiLabio GA, Ingold KU (2004) J Org Chem 69:1620

    Article  CAS  Google Scholar 

  21. Kim CK, Lee KA, Sohn CK, Sung DD, Oh HK, Lee I (2005) J Phys Chem A 109:2978

    Article  CAS  Google Scholar 

  22. Exner O, Böhm S (2004) Phys Chem Chem Phys 6:3864

    Article  CAS  Google Scholar 

  23. Exner O, Böhm S (2006) J Phys Org Chem 19:393

    Article  CAS  Google Scholar 

  24. Liu L, Fu Y, Liu R, Li R-Q, Guo Q-X (2004) J Chem Inf Comput Sci 44:652

    CAS  Google Scholar 

  25. Guerra M, Amorati R, Pedulli GF (2004) J Org Chem 69:5460

    Article  CAS  Google Scholar 

  26. Portal CF, Bradley M (2006) Anal Chem 78:4931

    Article  CAS  Google Scholar 

  27. Mulder P, Mozenson O, Lin S, Bernardes CES, Minas da Piedade ME, Santos AFLOM, Ribeiro Da Silva MAV, DiLabio GA, Korth H-G, Ingold KU (2006) J Phys Chem A 110:9949

    Article  CAS  Google Scholar 

  28. Galabov B, Ilieva S, Hadjieva B, Atanasov Y, Schaefer HF III (2008) J Phys Chem A 112:6700

    Article  CAS  Google Scholar 

  29. Sánchez RS, Zhuravlev FA (2007) J Am Chem Soc 129:5824

    Article  Google Scholar 

  30. Fayet G, Joubert L, Rotureau P, Adamo C (2008) J Phys Chem A 112:4054

    Article  CAS  Google Scholar 

  31. Fang Y, Liu L, Feng Y, Li X-S, Guo Q-X (2002) J Phys Chem A 106:4669

    Article  CAS  Google Scholar 

  32. Galabov B, Nikolova V, Wilke JJ, Schaefer HF III, Allen WD (2008) J Am Chem Soc 130:9887

    Article  CAS  Google Scholar 

  33. Hammett LP (1937) J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  34. Jaffé HH (1952) J Chem Phys 20:279

    Article  Google Scholar 

  35. Cheshmedzhieva D, Ilieva S, Galabov B (2010) J Mol Struct 976:427

    Article  CAS  Google Scholar 

  36. Galabov B, Ilieva S, Schaefer HF III (2006) J Org Chem 71:6382

    Article  CAS  Google Scholar 

  37. Sadlej-Sosnowska N (2007) J Phys Chem A 111:11134

    Article  CAS  Google Scholar 

  38. Haeberlein M, Murray JS, Brinck T, Politzer P (1992) Can J Chem 70:2209

    Article  CAS  Google Scholar 

  39. Haeberlein M, Brinck T (1996) J Phys Chem 100:10116

    Article  CAS  Google Scholar 

  40. Gadre SR, Suresh CH (1997) J Org Chem 62:2625

    Article  CAS  Google Scholar 

  41. Suresh CH, Alexander P, Vijayalakshmi KP, Sajith PK, Gadre SR (2008) Phys Chem Chem Phys 10:6492

    Article  CAS  Google Scholar 

  42. Gross KC, Seybold PG (2001) J Org Chem 66:6919

    Article  CAS  Google Scholar 

  43. Park G, Cho BR (2004) J Phys Org Chem 17:169

    Article  CAS  Google Scholar 

  44. Slagt MQ, Rodríguez G, Grutters NMP, Klein Gebbink RJM, Klopper W, Jenneskens LW, Lutz M, Spek AL, Van Koten G (2004) Chem Eur J 10:1331

    Article  CAS  Google Scholar 

  45. Xu X-P, Au-Yeung SCF (2000) J Am Chem Soc 122:6468

    Article  CAS  Google Scholar 

  46. Williams VE, Lemieux RP (1998) J Am Chem Soc 120:11311

    Article  CAS  Google Scholar 

  47. Gross KC, Seybold PG (2001) Int J Quantum Chem 85:569

    Article  CAS  Google Scholar 

  48. DiLabio GA, Pratt DA, Wright JS (2000) J Org Chem 65:2195

    Article  CAS  Google Scholar 

  49. Domingo LR, Pérez P, Contreras R (2003) J Org Chem 68:6060

    Article  CAS  Google Scholar 

  50. Meneses L, Araya A, Pilaquinga F, Fuentealba P (2008) Chem Phys Lett 460:27

    Article  CAS  Google Scholar 

  51. Takahata Y, Chong DP (2005) Int J Quantum Chem 103:509

    Article  CAS  Google Scholar 

  52. Segala M, Takahata Y, Chong DP (2006) J Mol Struct (Theochem) 758:61

    Article  CAS  Google Scholar 

  53. Li X-H, Chen Q-D, Zhang X-Z (2009) Struct Chem 20:1043

    Article  CAS  Google Scholar 

  54. Li X-H, Tang Z-X, Zhang X-Z (2009) J Mol Struct (Theochem) 900:50

    Article  CAS  Google Scholar 

  55. Smith PJ, Popelier PLA (2005) Org Biomol Chem 3:3399

    Article  CAS  Google Scholar 

  56. O’Brien SE, Popelier PLA (2001) J Chem Inf Comput Sci 41:764

    Google Scholar 

  57. Popelier PLA, Chandry UA, Smith PJ (2002) J Chem Soc Perkin Trans 2:1231

    Google Scholar 

  58. Sadlej-Sosnowska N (2009) Pol J Chem 83:2215

    CAS  Google Scholar 

  59. Gross KC, Seybold PG (2000) Int J Quantum Chem 80:1107

    Article  CAS  Google Scholar 

  60. Hollingsworth CA, Seybold PG, Hadad CM (2002) Int J Quantum Chem 90:1396

    Article  CAS  Google Scholar 

  61. Fernández I, Frenking G (2006) J Org Chem 71:2251

    Article  Google Scholar 

  62. Sadlej-Sosnowska N (2007) Chem Phys Lett 447:192

    Article  CAS  Google Scholar 

  63. Sadlej-Sosnowska N (2007) Pol J Chem 81:1123

    CAS  Google Scholar 

  64. Sadlej-Sosnowska N, Murłowska K (2008) Pol J Chem 82:935

    CAS  Google Scholar 

  65. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Menucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1999) Gaussian 98, revision A.11.4. Gaussian, Pittsburgh

    Google Scholar 

  66. PC Spartan Pro 1.0.5 (2000) Wavefunction, Inc., Irvine, CA

  67. Cramer CJ (2003) Essentials of computational chemistry. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  68. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  69. Zar JH (1974) Biostatistical analysis. Prentice Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sadlej-Sosnowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krygowski, T.M., Sadlej-Sosnowska, N. Towards physical interpretation of Hammett constants: charge transferred between active regions of substituents and a functional group. Struct Chem 22, 17–22 (2011). https://doi.org/10.1007/s11224-010-9676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-010-9676-9

Keywords

Navigation