Skip to main content
Log in

Effect of hydrogen bonds and CF3 group on the regioselectivity and mechanism of [3 + 2] cycloaddition reactions between nitrile oxide and 2,4-disubstituted cyclopentenes. A MEDT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism and the regioselectivity of the non-polar [3 + 2] cycloaddition reactions between nitrile oxide and two cyclopentenes were theoretically investigated within the molecular electron density theory (MEDT) using DFT methods, namely the B3LYP, MPWB1K and ωB97XD functionals together with the standard 6-31G(d) basis set. The activation energies of these 32CA reactions are relatively high, due to the low nucleophilic power of both cycloalkenes and the relatively moderate electrophilic nature of the nitrile oxide. The B3LYP and MPWB1K functionals reproduced high relative energies values, while the ωB97XD one yields better values in the kinetic and thermodynamic energies. The completely 4-regioselectivity that observed experimentally has been explained by the analysis of the relative energies, in which the formation of 4-regioismeric cycloadducts is always the more kinetically favored one. The electron localization function (ELF) topological analysis showed that the studied 32CA reactions proceed through two-stage one-step nonconcerted mechanism. The effects of the hydrogen bonds on the regioselectivity determination have been investigated by mean both noncovalent interactions (NCI) and quantum theory of atoms in molecule (QTAIM) analyses, which confirm the presence of high strength N − H···O hydrogen bond and a supplementary weak stabilized H…F hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Scheme 2.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

Code availability

All calculations have been performed using the Gaussian 09 program and Multiwfn.

References

  1. N. Nagatoshi, Methods and Applications of Cycloaddition Reactions in Organic Syntheses, Wiley, 2014.

  2. Padwa A (1984) 1,3-Dipolar Cycloaddition Chemistry, Wiley. Interscience, New York 1:2

    Google Scholar 

  3. R. Huisgen, Int. Angew. Chem. Ed. Engl.1963, 2,565–598; O. Tsuge, S. Kanemasa , Advances in Heterocyclic Chemistry.1989, 45, 323–349; Hu. Yunfeng, K. N. Houk, Tetrahedron. 2000, 56, 8239–8243.

  4. Cordero FM, Giomi D, Lascialfari L (2014) Prog Heterocycl Chem 26:319–348

    Article  Google Scholar 

  5. Ríos-Gutiérrez M, Domingo LR, Esseffar M, Oubella A, Itto YA (2020) Molecules 25:1085

    Article  Google Scholar 

  6. a) Nacereddine, AK., Layeb, H., Chafaa, F., Yahia, W., Djerourou, A., & Domingo, L. R. (2015). RSC Advances, 5(79), 64098–64105.; b) Hellel, D., Chafaa, F., Nacereddine, A. K., Djerourou A., & Vrancken, E. (2017).; RSC advances, 7(48), 30128–30141., c) Chafaa, F., Hellel, D., Nacereddine, AK., & Djerourou, A. (2016). Molecular Physics, 114(5), 663–670. ; d) Nacereddine, A. K., Yahia, W., Sobhi, C., Layeb, H., Lechtar, Z and Djerourou, A. (2013). Journal of Applied Biopharmaceutics and Pharmacokinetics, 1, 18–23., e) Barama, L., Bayoud, B., Chafaa, F., Nacereddine, A. K and Djerourou, A. (2018). Structural Chemistry, 29(6), 1709–1721. ; f) Jasiński, R and Dresler, E. (2020). Organics, 1(1), 49–69.

  7. Huisgen R (1967) Cycloadditions-definition, classification, and characterization. Int Angew Chem Ed Engl 6:16

    Article  Google Scholar 

  8. Firestone RA (1968) Mechanism of 1, 3-dipolar cycloadditions. J Org Chem 33:2285–2290

    Article  CAS  Google Scholar 

  9. Huisgen R, Mlostoń G, Langhals E (1986) J Org Chem 51:4085

    Article  CAS  Google Scholar 

  10. a) T. Hashimoto, K. Maruoka, Chem. Rev. 115 (2015) 5366–5412.; b) S. Roscales, J. Plumet, Org. Biomol. Chem. 16 (2018) 8446–8461., c) Woliński, P., Kącka-Zych, A., Demchuk, O. M., Łapczuk-Krygier, A., Mirosław, B and Jasiński, R. (2020). Journal of Cleaner Production, 275, 122086.

  11. Chien-Liang C, Tzu-Wei C, Yung-Wen C, Jim-Min F (2019) Tetrahedron 75:4458–4470

    Article  Google Scholar 

  12. a) Khorief Nacereddine, A., Merzoud, L., Morell, C., & Chermette, H. (2021). Journal of Computational Chemistry, 42(18), 1296–1311.; b) Chafaa, F., Nacereddine, A. K., & Djerourou, A. (2019). Theoretical Chemistry Accounts, 138(12), 1–11. ; c) Chafaa, F., Hellel, D., Nacereddine, A. K., & Djerourou, A. (2016). Tetrahedron Letters, 57(1), 67–70.

  13. Domingo LR (2016) Molecules 21:1319

    Article  Google Scholar 

  14. Fukui, K. Molecular Orbitals in Chemistry Physics and Biology; Academic Press: New York, NY, USA, 1964.

  15. MJ. Frisch, GW. Trucks, HB. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J . Hasegawa, M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J. E. Peralta, F. Ogliaro Jr, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J .J . Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.Cioslowski, Fox D , Gaussian 09, Revision A.02. Gaussian, Wallingford. 2009.

  16. a) C. Lee, W. Yang, RG. Parr, Phys. Rev.1988 37,785; b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372–1377.

  17. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  18. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  19. WJ. Hehre, L. Radom, PVR. Schleyer, J. AB Initio orbital molecular theory A. Pople, Wiley, New York. 1986.

  20. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  21. (a) E. Cances, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032; (b) M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys. Lett., 1996, 255, 327; (c) V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem., 1998, 19, 404.

  22. J. Tomasi, M. Persico, Chem. Rev.1994, 94, 2027–2094; B. Y. Simkin, I. Sheikhet, Quantum chemical and statistical theory of solutions: a computational approach Ellis. Horwood.1995, London.

  23. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  24. Domingo LR (2014) RSC Adv 4:32415–32428

    Article  CAS  Google Scholar 

  25. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Tetrahedron 72:1524–1532

    Article  CAS  Google Scholar 

  26. A. E. Reed, RB. Weinstock, F . Weinhold, J. Chem. Phys. 1985, 735–746.

  27. a) Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen J, Yang AW (2010) J Am Chem Soc 132, 6498; b) Lane JR, Contreras-Garcia J, Piquemal JP, Miller BJ, Kjaergaard HGJ (2013) Chem Theory Comput 9:3263.

  28. Contreras-Garcia JE, Johnson R, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625

    Article  CAS  Google Scholar 

  29. Bader RFW (1990) Atoms in molecules. Claredon press, A quantum theory

    Google Scholar 

  30. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  31. Parr RG, Von Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  32. (a) RG. Parr, LV. Szentpaly and S. Liu, J. Am. Chem. Soc., 1983, 105, 7512–7516; (b) R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

  33. (a) LR. Domingo, E. Chamorro and P. Pérez, J. Org. Chem., 2008, 73, 4615–4624; (b) L. R. Domingo and P. Pérez, Org. Biomol. Chem., 2011, 9, 7168–7175.

  34. Kohn W, Sham LJ (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  35. Domingo LR, Pérez P, Sáez JA (2013) RSC Adv 3:1486

    Article  CAS  Google Scholar 

  36. a) P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793. ; b) L. R. Domingo, M. Ríos-Gutiérrez, P. Pérez, Molecules 2016, 21, 748., c) H. Chermette, J. Comput. Chem. 1999, 20, 129.

  37. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  38. P. Jaramillo, LR. Domingo, E. Chamorro and PP´erez, J. Mol. Struct.: THEOCHEM, 2008, 865, 68–76.

  39. Domingo LR, Sáez JA (2009) Org Biomol Chem 7:3576

    Article  CAS  Google Scholar 

  40. Yahia W, Khorief Nacereddine A, Liacha M, Djerourou A (2018) Int J Quantum Chem 118(11):e25540

    Article  Google Scholar 

  41. Domingo LR, Pérez P, Sáez JA (2012) Org Biomol Chem 10:3841

    Article  CAS  Google Scholar 

  42. Benchouk W, Mekelleche SM, Silvi B, Aurell MJ, Domingo LR (2011) J Phys Org Chem 24:611–618

    Article  CAS  Google Scholar 

  43. Domingo LR, Aurell MJ, Pérez P (2014) Tetrahedron 70:4519

    Article  CAS  Google Scholar 

  44. a) F. Chafaa, A. K. Nacereddine, A. Djerourou, Letter in Organic. 2020, 17, 260–267.; b) A. K. Nacereddine, J. Mol. Mod. 2020, 26, 328.

  45. a) C. Sobhi, A. Khorief Nacereddine, A. Djerourou, M. Ríos-Gutiérrez, L. R. Domingo, J. Phys. Org. Chem. 2016,30,6.; b) Ríos-Gutiérrez M, Nasri L, Khorief Nacereddine A, Djerourou A,Domingo LR (2018) J Phys Org Chem 31:e3830; c) Nasri L, Ríos-Gutiérrez M, Nacereddine AK, Djerourou A, Domingo LR (2017) Theor Chem Accounts 136:104.; d) Nacereddine, A. K., Sobhi, C., Djerourou, A., Ríos-Gutiérrez, M., & Domingo, L. R. (2015). RSC advances, 5(120), 99299–99311.

  46. Grabowski SJ, Sokalski WA, Dyguda E, Leszczynski J (2006) J Phys Chem B 110:6444

    Article  CAS  Google Scholar 

  47. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  48. a) Jasiński, R. (2018). Journal of Fluorine Chemistry, 206, 1–7.; b) Sobhi, C., Nacereddine, A. K., Djerourou, A., Aurell, M. J and Domingo, L. R. (2012). Tetrahedron, 68(40), 8457–8462.

Download references

Funding

This work was supported by the Ministry of Higher Education and Scientific Research of the Algerian Government [project PRFU Code: A6N0UN202090005].

Author information

Authors and Affiliations

Authors

Contributions

Computational calculations were performed by Miss. Hanifa Chouit, conceptualization, methodology and writing original draft of the article were done by Dr. Chafia Sobhi, data curation was done by Dr. Bouasla Souad, the visualization was performed by Miss. Samia Messikh, formal analysis was done by Mr. Azeddine Kheribeche, and reviewing of the article draft and submitting the article were performed by Prof. Abdelmalek Khorief Nacereddine.

Corresponding authors

Correspondence to Chafia Sobhi or Abdelmalek Khorief Nacereddine.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouit, H., Sobhi, C., Bouasla, S. et al. Effect of hydrogen bonds and CF3 group on the regioselectivity and mechanism of [3 + 2] cycloaddition reactions between nitrile oxide and 2,4-disubstituted cyclopentenes. A MEDT study. J Mol Model 28, 104 (2022). https://doi.org/10.1007/s00894-022-05086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05086-y

Keywords

Navigation