Skip to main content
Log in

First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate have been studied using density functional theory. The results indicate that the influence of external electric field on the crystal structure is anisotropic. The electric field effects on the distance of the Pb–O ionic interactions are stronger than those on the covalent interactions. However, the changes of most structural parameters are not monotonically dependent on the increased electric field. This reveals that lead styphnate can undergo a phase transition upon the external electric field. When the applied field is increased to 0.003 a.u., the effective band gap and total density of states vary evidently. And the Franz-Keldysh effect yields larger influence on the band gap than the structural change induced by external electric field. Furthermore, lead styphnate has different initial decomposition reactions in the presence and absence of the electric field. Finally, we find that its sensitivity becomes more and more sensitive with the increasing electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Behler KD, Ciezak-Jenkins JA, Sausa RC (2013) J Phys Chem A 117:1737–1743

    Article  CAS  Google Scholar 

  2. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090–2097

    Article  CAS  Google Scholar 

  3. Qiu L, Zhu WH, Xiao JJ, Xiao HM (2008) J Phys Chem B 112:3882–3893

    Article  CAS  Google Scholar 

  4. Liu Y, Gong XD, Wang LJ, Wang GX (2011) J Phys Chem C 115:11738–11748

    Article  CAS  Google Scholar 

  5. Liu Y, Zhang L, Wang GX, Wang LJ, Gong XD (2012) J Phys Chem C 116:16144–16153

    Article  CAS  Google Scholar 

  6. Zhu WH, Xiao HM (2011) J Phys Chem C 115:20782–20787

    Article  CAS  Google Scholar 

  7. Ge NN, Wei YK, Ji GF, Chen XR, Zhao F, Wei DQ (2012) J Phys Chem B 116:13696–13704

    Article  CAS  Google Scholar 

  8. Manaa MR, Fried LE (2012) J Phys Chem C 116:2116–2122

    Article  CAS  Google Scholar 

  9. Pravica M, Liu Y, Robinson J, Velisavljevic N, Liu ZX, Galley M (2012) J Appl Phys 111:103534

    Article  Google Scholar 

  10. Pravica M, Galley M, Park C, Ruiz H, Wojno J (2011) High Press Res 31:80–85

    Article  CAS  Google Scholar 

  11. Auzanneau M, Roux M (1995) Propellants Explos Pyrotech 20:96–101

    Article  CAS  Google Scholar 

  12. Skinner D, Olson D, Block-Bolten A (1997) Propellants Explos Pyrotech 23:34–42

    Article  Google Scholar 

  13. Talawar MB, Agrawal AP, Anniyappan M, Wani DS, Bansode MK, Gore GM (2006) J Hazard Mater 137:1074–1078

    Article  CAS  Google Scholar 

  14. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP (2008) J Hazard Mater 151:289–305

    Article  CAS  Google Scholar 

  15. Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS (2009) J Hazard Mater 161:589–607

    Article  CAS  Google Scholar 

  16. Zhi C, Cheng X, Zhao F (2010) Propellants Explos Pyrotech 35:555–560

    Article  CAS  Google Scholar 

  17. Zhi C, Cheng X, Zhao F (2012) Chinese J Struct Chem 31:1263–1270

    Google Scholar 

  18. Türker L (2009) J Hazard Mater 169:454–459

    Article  Google Scholar 

  19. Zeman S (2006) J Hazard Mater 132:155–164

    Article  CAS  Google Scholar 

  20. Zeman S, Pelikan V, Majzlik J (2006) Cent Eur J Energ Mater 3:27–44

    CAS  Google Scholar 

  21. Zeman V, Koci J, Zeman S (1999) Chinese J Energ Mater 7:127–132

    CAS  Google Scholar 

  22. Zeman V, Koci J, Zeman S (1999) Chinese J Energ Mater 7:172–175

    CAS  Google Scholar 

  23. Zeman S, Koci J (2000) Chinese J Energ Mater 8:18–26

    CAS  Google Scholar 

  24. Koci J, Zeman V, Zeman S (2001) Chinese J Energ Mater 9:60–65

    CAS  Google Scholar 

  25. Keshavarz MH, Pouretedal HR, Semnani A (2009) J Hazard Mater 167:461–466

    Article  CAS  Google Scholar 

  26. Keshavarz MH (2008) J Hazard Mater 153:201–206

    Article  CAS  Google Scholar 

  27. Keshavarz MH, Pouretedal HR, Semnani A (2008) Indian J Eng Mater Sci 15:505–509

    CAS  Google Scholar 

  28. Keshavarz MH (2008) Indian J Eng Mater Sci 15:281–286

    CAS  Google Scholar 

  29. Zhu WH, Xiao HM (2009) J Phys Chem B 113:10315–10321

    Article  CAS  Google Scholar 

  30. Wang L, Zhang YZ, Zhang YF, Chen XS, Lu W (2010) Nanoscale Res Lett 5:1027–1031

    Article  CAS  Google Scholar 

  31. Baei MT, Peyghan AA, Moghimi M (2012) J Mol Model 18:4477–4489

    Article  CAS  Google Scholar 

  32. Baei MT, Peyghan AA, Moghimi M, Hashemian S (2013) J Mol Model 19:97–107

    Article  CAS  Google Scholar 

  33. Chattopadhyaya M, Alam MM, Chakrabarti S (2012) Phys Chem Chem Phys 14:9439–9443

    Article  CAS  Google Scholar 

  34. Jissy AK, Datta A (2012) ChemPhysChem 13:4163–4172

    Article  CAS  Google Scholar 

  35. Calvaresi M, Martinez RV, Losilla NS, Martinez J, Garcia R, Zerbetto F (2010) J Phys Chem Lett 1:3256–3260

    Article  CAS  Google Scholar 

  36. Pierce-Butler MA (1982) Acta Crystallogr. Sect B 38:3100–3104

    Article  Google Scholar 

  37. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  38. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  39. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  40. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  41. Zhu WH, Xiao HM (2010) Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  42. Kuklja MM, Stefanovich EV, Kunz AB (2000) J Chem Phys 112:3417–3423

    Article  CAS  Google Scholar 

  43. Kuklja MM, Kunz AB (2000) J Appl Phys 87:2215–2218

    Article  CAS  Google Scholar 

  44. Luty T, Ordon P, Eckhardt CJ (2002) J Chem Phys 117:1775–1785

    Article  CAS  Google Scholar 

  45. Faust WL (1989) Science 245:37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National “973”project, the Natural Science Foundation of Chongqing (Grant No. cstc2011jjA50013), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ111310), and the State Key Laboratory of Explosion Science and Technology (Grant No. ZDKT08-01, Grant No. YBKT10-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huisheng Huang or Tonglai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Huang, H., Zhang, T. et al. First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate. J Mol Model 20, 2072 (2014). https://doi.org/10.1007/s00894-014-2072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2072-4

Keywords

Navigation