Skip to main content
Log in

Electric field effect on the zigzag (6,0) single-wall BC2N nanotube for use in nano-electronic circuits

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have analyzed the effect of external electric field on the zigzag (6,0) single-wall BC2N nanotube using density functional theory calculations. Analysis of the structural parameters indicates that the nanotube is resistant against the external electric field strengths. Analysis of the electronic structure of the nanotube indicates that the applied parallel electric field strengths have a much stronger interaction with the nanotube with respect to the transverse electric field strengths and the nanotube is easier to modulate by the applied parallel electric field. Our results show that the properties of the nanotube can be controlled by the proper external electric field for use in nano-electronic circuits.

Three-dimensional (3D) views of the (6,0) zigzag BC2N nanotube under electric field effect

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  2. Politzer P, Murray Jane S, Lane P, Concha Monica C, Jin P, Peralta-Inga Z (2005) J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  3. Ma F, Zhou ZJ, Li ZR, Wu D, Li Y, Li ZS (2010) Chem Phys Lett 488:182–186

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079–13088

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187–1190

    Article  CAS  Google Scholar 

  6. Wang WL, Bai XD, Liu KH, Xu Z, Golberg D, Bando Y, Wang EG (2006) J Am Chem Soc 128:6530–6531

    Article  CAS  Google Scholar 

  7. Liao L, Liu K, Wang W, Bai X, Wang E, Liu Y, Li J, Liu C (2007) J Am Chem Soc 129:9562–9563

    Article  CAS  Google Scholar 

  8. Enouz S, Stéphan O, Cochon JL, Colliex C, Loiseau A (2007) Nano Lett 7:1856–1862

    Article  CAS  Google Scholar 

  9. Rossato J, Baierle RJ (2007) Phys Rev B 75:235401–235407

    Article  Google Scholar 

  10. Pan H, Feng YP, Lin JY (2006) Phys Rev B 73:035420–035425

    Article  Google Scholar 

  11. Hernndez E, Goze C, Bernier P, Rubio A (1998) Phys Rev Lett 80:4502–4505

    Article  Google Scholar 

  12. Zhou Z, Zhao J, Gao X, Chen Z, Yan J, Schleyer PvR, Morinaga M (2005) Chem Mater 17:992–1000

    Article  CAS  Google Scholar 

  13. Peng S, Cho K (2003) Nano Lett 3:513–517

    Article  CAS  Google Scholar 

  14. Khoo KH, Mazzoni MSC, Louie SG (2004) Phys Rev B 69:201401(R)

    Article  Google Scholar 

  15. Guo GY, Ishibashi S, Tamura T, Terakura K (2007) Phys Rev B 75:245403–245419

    Article  Google Scholar 

  16. Attaccalite C, Wirtz L, Marini A, Rubio A (2007) Phys Status Solid B 244:4288–4292

    Article  CAS  Google Scholar 

  17. Baei MT, Ahmadi Peyghan A, Moghimi M (2012) J Mol Model. doi:10.1007/s00894-012-1440-1

  18. Sabzyan H, Farmanzadeh D (2007) J Comput Chem 28:923–931

    Article  Google Scholar 

  19. Schmidt M et al. (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Peyghan, A.A., Moghimi, M. et al. Electric field effect on the zigzag (6,0) single-wall BC2N nanotube for use in nano-electronic circuits. J Mol Model 19, 97–107 (2013). https://doi.org/10.1007/s00894-012-1526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1526-9

Keywords

Navigation