Skip to main content
Log in

Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0–140 × 10-4 a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.

Three-dimensional (3D) views of the (6,0) zigzag AlNNT under electric field effect

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris Ph (2002) Appl Phys Lett 80:2773–2775

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127–1129

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079–13088

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187–1190

    Article  CAS  Google Scholar 

  6. Mirzaei M, Shif A, Hadipour NL (2008) Chem Phys Lett 461:246–248

    Article  CAS  Google Scholar 

  7. Baei MT (2012) Monatsh Chem 143:545–549

    Article  CAS  Google Scholar 

  8. Strite S, Morkoc H (1992) J Vac Sci Technol B 10:1237

    Article  CAS  Google Scholar 

  9. Jain C, Willander M, Narayan J, van Overstraeten R (2000) J Appl Phys 87:965

    Article  CAS  Google Scholar 

  10. Ruterana P, Albrecht M, Neugebauer J (2003) Nitride semiconductors: handbook on materials and devices. Wiley, New York

    Book  Google Scholar 

  11. Khoo KH, Mazzoni MSC, Louie SG (2004) Phys Rev B 69:201401(R

    Article  Google Scholar 

  12. Guo GY, Ishibashi S, Tamura T, Terakura K (2007) Phys Rev B 75:245403

    Article  Google Scholar 

  13. Attaccalite C, Wirtz L, Marini A, Rubio A (2007) Phys Status Solidi B 244:4288–4292

    Article  CAS  Google Scholar 

  14. Machado M, Azevedo S (2011) Eur Phys J B 81:121–125

    Article  CAS  Google Scholar 

  15. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  16. Hazarika KK, Baruah NC, Deka RC (2009) Struct Chem 20:1079

    Article  CAS  Google Scholar 

  17. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  18. Sabzyan H, Farmanzadeh D (2007) J Comput Chem 28:923

    Article  Google Scholar 

  19. Schmidt M et al (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  20. Politzer P, Lane P, Murray JS, Concha MC (2005) J Mol Model 11(1):1

    Article  CAS  Google Scholar 

  21. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O'Connor CJ, Politzer P (2003) Nano Letters 3(1):21–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Peyghan, A.A. & Moghimi, M. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube. J Mol Model 18, 4477–4489 (2012). https://doi.org/10.1007/s00894-012-1440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1440-1

Keywords

Navigation