Skip to main content
Log in

Probing the electronic structures and properties of neutral and charged arsenic sulfides (As n S(−1,0,+1), n = 1–7) using Gaussian-3 theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and energies of neutral and charged arsenic sulfides As n S(−1,0,+1) (n = 1–7) were systematically investigated using the G3 method. The bonding properties and the stabilities of As n S and their ions were discussed. The adiabatic electron affinities (AEAs) and adiabatic ionization potentials (AIPs) were presented. The ground-state structures of As n S can be considered as the lowest-energy structure of neutral As n+1 by replacing an As atom with a S atom, that is, “substitutional structure”, in which the feature of sulfur bonding is edge-bridging. The ground-state structures of As n S+ tend to be derived from the lowest-energy structure of cation As n + by attaching to a S atom, that is, “attaching structure”, in which the sulfur can be three-fold coordinated. There is no rule to be found for the ground-state structure of anion As n S, in which the sulfur can be a terminal atom. There are odd-even alternations in both AEAs and AIPs as a function of size of As n S. The dissociation energies of S, S, and/or S+ from neutral As n S and their ions were calculated to examine their stabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alcamí M, Mó O, Yáňez M (1998) J Chem Phys 108:8957–8963

    Article  Google Scholar 

  2. Zhao Y, Xu W, Li Q, Xie Y, Schaefer HF (2004) J Comput Chem 25:907–920

    Article  CAS  Google Scholar 

  3. Liang G, Wu Q, Yang J (2011) J Phys Chem A 115:8302–8309

    Article  CAS  Google Scholar 

  4. Lippa TP, Xu S-J, Lyapustina A, Nilles JM, Bowen KH (1998) J Chem Phys 109:10727–10731

    Article  CAS  Google Scholar 

  5. Zhai H-J, Wang L-S, Kuznetsov AE, Boldyrev AI (2002) J Phys Chem A 106:5600–5606

    Article  CAS  Google Scholar 

  6. Walter CW, Gibson ND, Field RL, Snedden AP, Shapiro JZ, Janczak CM, Hanstorp D (2009) Phys Rev A 80:014501-1–014501-4

    Article  Google Scholar 

  7. Guo L (2007) J Mater Sci 42:9154–9162

    Article  CAS  Google Scholar 

  8. Zhao J, Zhou X, Chen X, Wang J, Jellinek (2006) J Phys Rev B 73:115418-1–115418-10

    Google Scholar 

  9. Bai X, Zhang Q, Gao A, Yang J (2013) Comput Theor Chem 1009:94–102

    Article  CAS  Google Scholar 

  10. Dilda PJ, Hogg P (2007) Cancer Treat Rev 33:542–564

    Article  CAS  Google Scholar 

  11. Bai X, Zhang Q, Yang J, Ning H (2012) J Phys Chem A 116:9382–9390

    Article  CAS  Google Scholar 

  12. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  13. Pollzzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Nature 454:505–509

    Article  Google Scholar 

  14. Wang LS, Lee YT, Shirley DA, Balasubramanian K, Feng P (1990) J Chem Phys 93:6310–6317

    Article  CAS  Google Scholar 

  15. Wang LS, Niu B, Lee YT, Shirley DA, Ghelichkhani E, Grant ER (1990) J Chem Phys 93:6318–6326

    Article  CAS  Google Scholar 

  16. Wang LS, Niu B, Lee YT, Shirley DA, Ghelichkhani E, Grant ER (1990) J Chem Phys 93:6327–6333

    Article  CAS  Google Scholar 

  17. Bosworth YM, Clark JH, Rippon DM (1973) J Mol Spectrosc 46:240–255

    Article  CAS  Google Scholar 

  18. Morino Y, Ukaji T, Ito T (1966) Bull Chem Soc Jpn 39:64–71

    Article  CAS  Google Scholar 

  19. Warren DS, Gimarc BM, Zhao M (1994) Inorg Chem 33:710–715

    Article  CAS  Google Scholar 

  20. Ballone P, Jones RO (1994) J Chem Phys 100:4941–4946

    Article  CAS  Google Scholar 

  21. Ramírez-Galicia G, Peña-Méndez EM, Pangavhane SD, Alberti M, Havel J (2010) Polyhedron 29:1567–1574

    Article  Google Scholar 

  22. Naumov P, Makreski P, Jovanovski G (2007) Inorg Chem 46: 10624–10631

  23. Holomb R, Veres M, Mitsa V (2009) J Optoelectron Adv Mater 11:917–923

    CAS  Google Scholar 

  24. Banerjee A, Jensen JO, Jensen JL (2003) J Mol Struct (Theochem) 626:63–75

    Article  CAS  Google Scholar 

  25. Špalt Z, Alberti M, Peña-Méndez E, Havel J (2005) Polyhedron 24:1417–1424

    Article  Google Scholar 

  26. Pangavhane SD, Houška J, Wágner T, Pavlišta M, Janča J, Havel J (2010) Rapid Commun Mass Spectrom 24: 95–102

    Google Scholar 

  27. Neilson JR, Kovalskiy A, Vlček M, Jain H, Miller F (2007) J Nano-Cryst Solid 353:1427–1430

    Article  CAS  Google Scholar 

  28. Nguyen VQ, Sanghera JS, Cole B, Pureza P, Kung FH, Aggarwal ID (2002) J Am Ceram Soc 85:2056–2058

    Article  CAS  Google Scholar 

  29. Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Am Mineral 81:874–880

    CAS  Google Scholar 

  30. Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) J Am Chem Soc 132:11398–11401

    Article  CAS  Google Scholar 

  31. Billes F, Mitsa V, Fejes I, Mateleshko N, Fejsa I (1999) J Mol Struct 513:109–115

    Article  CAS  Google Scholar 

  32. Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectrochim Acta A 52:1391–1401

    Article  Google Scholar 

  33. Pagliai M, Bonazzi P, Bindi L, Muniz-Miranda M, Cardini G (2011) J Phys Chem A 115:4558–4562

    Article  CAS  Google Scholar 

  34. Lau KH, Brittaln RD, Hlldenbrand DL (1982) J Phys Chem 86:4429–4432

    Article  CAS  Google Scholar 

  35. Brunetti B, Piacente V, Scardala P (2007) J Chem Eng Data 52:1343–1346

    Article  CAS  Google Scholar 

  36. Munir ZA, Street GB, Winters HF (1971) J Chem Phys 55:4520–4527

    Article  CAS  Google Scholar 

  37. Babić D, Rabii S (1988) Phys Rev B 38:10490–10498

    Article  Google Scholar 

  38. Babić D, Rabii S, Bernholc J (1989) Phys Rev B 39:10831–10838

    Article  Google Scholar 

  39. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  40. Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA (2001) J Chem Phys 114:9287–9295

    Article  CAS  Google Scholar 

  41. Hao D, Liu J, Yang J (2008) J Phys Chem A 112:10113–10119

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  43. Shimauchi M (1971) Can J Phys 49:1249–1254

    Article  CAS  Google Scholar 

  44. Gao A, Li G, Chang Y, Chen H, Li Q (2010) J Mol Struct (Theochem) 961:88–96

    Article  CAS  Google Scholar 

  45. Beutel M, Setzer KD, Shestakov O, Fink EH (1996) J Mol Spectrosc 178:165–171

    Article  CAS  Google Scholar 

  46. Xu W, Li G, Yu G, Zhao Y, Li Q (2003) J Phys Chem A 107:258–266

    Article  CAS  Google Scholar 

  47. Mok DKW, Lee EPF, Chau F, Dyke JM (2011) Phys Chem Chem Phys 13:9540–9553

    Article  CAS  Google Scholar 

  48. Shimauchi M, Karasawa S (1975) Can J Phys 53:831–840

    Article  CAS  Google Scholar 

  49. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Inner Mongolia Talent Foundation from the Inner Mongolia Department of Human Resources and Social Security, and by the Grant (No, 21263010) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Kang, Y., Wang, X. et al. Probing the electronic structures and properties of neutral and charged arsenic sulfides (As n S(−1,0,+1), n = 1–7) using Gaussian-3 theory. J Mol Model 19, 5199–5211 (2013). https://doi.org/10.1007/s00894-013-2017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2017-3

Keywords

Navigation