Skip to main content
Log in

Evolution of the electronic structure and properties of neutral and charged arsenic clusters

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Geometrical and electronic properties of Asn (n = 2–15) neutrals, cations and anions have been investigated using the density functional method of B3LYP. Berny structural optimization and frequency analyses are performed with the basis of 6–311 + G(d) for both neutrals and charged ions. The total energies of these clusters are then used to study the evolution of their binding energy, relative stability, and electronic properties as a function of size. The geometries are found to undergo a structural change from two dimensional to three-dimensional when the cluster contains four atoms. The geometrical changes are companied by corresponding changes in the nearest-neighbor distances and coordination numbers. In the whole size range, both ionization potential and electron affinity have the tendency of decrease when the number of As units in the cluster increases. The stability of clusters exhibits strong even-odd alternations with several magic numbers. The neutral Asn clusters are found to be even-numbered with local maxima at n = 2 and 4, while the cationic and anionic clusters are preferentially odd-numbered with As +3 , As +5 , and As 5 being the most stable ions according to the calculated results of the both energy gain and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ballone P, Jones RO (1994) J Chem Phys 100:4941

    Article  CAS  Google Scholar 

  2. Shen M, Schaefer III (1994) J Chem Phys 101:2261

    Article  Google Scholar 

  3. Yoo RK, Ruscic B, Berkowitz J (1992) J Chem Phys 96:6696

    Article  CAS  Google Scholar 

  4. Lippa TP, Xu SJ, Lyapustina SA (1998) J Chem Phys 109:10727

    Article  CAS  Google Scholar 

  5. Chi X, Tian S, Xu K (2002) Chin J Chem Phys 15:22

    CAS  Google Scholar 

  6. Jones RO, Ganteor G, Hunsicker S, Pieperhoff P (1995) J Chem Phys 103:9549

    Article  CAS  Google Scholar 

  7. Polak ML, Joe Ho, Gustav G, Lineberger WC (1992) J Chem Phys 97:8990

    Article  CAS  Google Scholar 

  8. Zhang H, Balasubramanian K (1992) J Chem Phys 97:3437

    Article  CAS  Google Scholar 

  9. Igel-Mann G, Stoll H, Preuss H (1993) Mol Phys 80:325

    Article  CAS  Google Scholar 

  10. Haser M, Schneide U, Ahlrichs R (1992) J Am Chem Soc 114:9551

    Article  Google Scholar 

  11. Scherer OJ (1990) Angew Chem Int Ed Engl 102:1137

    Article  CAS  Google Scholar 

  12. Dimaio AJ, Rheingold AL (1990) Chem Rev 90:169

    Article  CAS  Google Scholar 

  13. Voako SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  Google Scholar 

  14. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  15. Beck AD (1993) J Chem Phys 98:5468

    Article  Google Scholar 

  16. Knight WD, Clemenger K, Saunders WA, Chou MY, Cohen ML (1984) Phys Rev Lett 52:2141

    Article  CAS  Google Scholar 

  17. Rao BK, Jena P (1985) Phys Rev B 32:2058

    Article  CAS  Google Scholar 

  18. Bhasker ND, Frueholz RP, Klimeak CM, Cook RA (1987) Phys Rev B 36:4418

    Article  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) computer code GAUSSIAN98, revision A.6. Gaussian, Inc., Pittsburgh, PA

  20. Zhao J, Zhou X, Chen X, Wang J, Jellinek J (2006) Phys Rev B 73:115418

    Article  Google Scholar 

  21. Bosworth YM, Clark JH, Rippon DM (1973) J Mol Spectrosc 46:240

    Article  CAS  Google Scholar 

  22. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  23. Yi J (2000) Chem Phys Lett 325:269

    Article  CAS  Google Scholar 

  24. Lide DR (ed) (2000). In: Chemical rubber company handbook of chemistry and physics, 81st edn. CRC Press, Boca Raton, Florida, USA

  25. Schiferl D, Barrett CS (1969) J Appl Crystallogr 2:30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), Youth Foundation of Shanxi (2007021009) and the Youth Academic Leader of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, L. Evolution of the electronic structure and properties of neutral and charged arsenic clusters. J Mater Sci 42, 9154–9162 (2007). https://doi.org/10.1007/s10853-007-1928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1928-8

Keywords

Navigation