Skip to main content
Log in

Study on electronic structures and properties of neutral and charged arsenic sulfides [As n S3 (−1,0,+1), n =1–6] with the Gaussian-3 scheme

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structures and energies of neutral and charged arsenic sulfides As n S3 (−1,0,+1) (n = 1–6) were studied systematically with the G3 method. The ground-state structures of these species are reported. The ground-state structures of As n S3 with n ≥ 4 can be considered as resulting from the replacement of an As atom of the ground-state structure of neutral As n+1S2 by an S atom. In neutral As n S3, the character of sulfur bonding is edge-bridging. The ground-state structures of anion As n S3 sometimes differ from their corresponding neutral structures. In such case, they exhibit a terminal sulfur atom. The ground-state structures of cationic As n S3 + are also sometimes different from the corresponding neutral ones. There, sulfur bonding can exhibit face-capping and arsenic can be four-fold coordinated. The potential energy surfaces of As4S3 + and As5S3 + are very flat and co-existence of various isomers of As4S3 + and As5S3 + is possible. Reliable adiabatic electron affinities (AEAs) and adiabatic ionization potentials (AIPs) of As n S3 are predicted. There are odd–even alternations in both AEAs and AIPs as a function of size. In addition, the reliable vertical detachment energies (VDEs) and vertical ionization potentials (VIPs) are presented. The dissociation energies (DEs) of S (and/or its ion S(−/+)) from As n S3 species and their ions were calculated to examine relative stabilities. The hardnesses and HOMO–LUMO gaps of As n S3 (n = 1–6) were evaluated and used to discuss relative chemical reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Babić D, Rabii S (1988) Phys Rev B 38:10490–10498

    Article  Google Scholar 

  2. Babić D, Rabii S, Bernholc J (1989) Phys Rev B 39:10831–10838

    Article  Google Scholar 

  3. Banerjee A, Jensen JO, Jensen JL (2003) J Mol Struct (THEOCHEM) 626:63–75

    Article  CAS  Google Scholar 

  4. Munir ZA, Street GB, Winters HF (1971) J Chem Phys 55:4520–4527

    Article  CAS  Google Scholar 

  5. Špalt Z, Alberti M, Peña-Méndez E, Havel J (2005) Polyhedron 24:1417–1424

    Article  Google Scholar 

  6. Naumov P, Makreski P, Jovanovski G (2007) Inorg Chem 46:10624–10631

    Article  CAS  Google Scholar 

  7. Ramírez-Galicia G, Peña-Méndez EM, Pangavhane SD, Alberti M, Havel J (2010) Polyhedron 29:1567–1574

    Article  Google Scholar 

  8. Kovalskiy A, Neilson JR, Miller AC, Miller FC, Vlcek M, Jain H (2008) Thin Solid Films 516:7511–7518

    Article  CAS  Google Scholar 

  9. San-Román-Alerigi DP, Anjum DH, Zhang Y, Yang X, Benslimane A, Ng TK, Hedhili MN, Alsunaidi M, Ooi BS (2013) J Appl Phys 113:044116-1–044116-10

    Article  Google Scholar 

  10. Verger F, Nazabal V, Colas F, Nĕmec P, Cardinaud C, Baudet E, Chahal R, Rinnert E, Boukerma K, Peron I, Deputier S, Guilloux-Viry M, Guin JP, Lhermite H, Moreac A, Compère C, Bureau B (2013) Opt Mater Express 3:2112–2131

    Article  Google Scholar 

  11. Lippa TP, Xu S-J, Lyapustina A, Nilles JM, Bowen KH (1998) J Chem Phys 109:10727–10731

    Article  CAS  Google Scholar 

  12. Nguyen VQ, Sanghera JS, Cole B, Pureza P, Kung FH, Aggarwal ID (2002) J Am Ceram Soc 85:2056–2058

    Article  CAS  Google Scholar 

  13. Neilson JR, Kovalskiy A, Vlček M, Jain H, Miller F (2007) J Non-Cryst Solids 353:1427–1430

    Article  CAS  Google Scholar 

  14. Holomb R, Veres M, Mitsa V (2009) J Optoelectron Adv Mater 11:917–923

    CAS  Google Scholar 

  15. Pangavhane SD, Houška J, Wágner T, Pavlišta M, Janča J, Havel J (2010) Rapid Commun Mass Spectrom 24:95–102

    Article  CAS  Google Scholar 

  16. Brannon JM, Patrick WH (1987) Environ Sci Technol 21:450–459

    Article  CAS  Google Scholar 

  17. Hughes MF (2002) Toxicol Lett 133:1–16

    Article  CAS  Google Scholar 

  18. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  19. Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MAH, Imam MB, Khan O, Sracek O (2004) Appl Geochem 19:181–200

    Article  CAS  Google Scholar 

  20. Pollzzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Nature 454:505–509

    Article  Google Scholar 

  21. Kyono A (2007) J Photochem Photobiol A Chem 189:15–22

    Article  CAS  Google Scholar 

  22. Naumov P, Makreski P, Petruševski G, Runčevski T, Jovanovski G (2010) J Am Chem Soc 132:11398–11401

    Article  CAS  Google Scholar 

  23. Trentelman K, Stodulski L, Pavlosky M (1996) Anal Chem 68:1755–1761

    Article  CAS  Google Scholar 

  24. Bonazzi P, Menchetti S, Pratesi G, Muniz-Miranda M, Sbrana G (1996) Am Mineral 81:874–880

    CAS  Google Scholar 

  25. Lau KH, Brittaln RD, Hlldenbrand DL (1982) J Phys Chem 86:4429–4432

    Article  CAS  Google Scholar 

  26. Espeau P, Tamarit JL, Barrio M, López DÓ, Perrin MA, Céolin R (2006) Chem Mater 18:3821–3826

    Article  CAS  Google Scholar 

  27. Brunetti B, Piacente V, Scardala P (2007) J Chem Eng Data 52:1343–1346

    Article  CAS  Google Scholar 

  28. Brittain RD, Lau KH, Hildenbrand DL (1983) J Electrochem Soc 130:1206–1210

    Article  CAS  Google Scholar 

  29. Rogstad A (1972) J Mol Struct 14:421–426

    Article  CAS  Google Scholar 

  30. Slade ML, Zallen R (1979) Solid State Commun 30:360–367

    Article  Google Scholar 

  31. Muniz-Miranda M, Sbrana G, Bonazzi P, Menchetti S, Pratesi G (1996) Spectrochim Acta A 52:1391–1401

    Article  Google Scholar 

  32. Billes F, Mitsa V, Fejes I, Mateleshko N, Fejsa I (1999) J Mol Struct 513:109–115

    Article  CAS  Google Scholar 

  33. Pagliai M, Bonazzi P, Bindi L, Muniz-Miranda M, Cardini G (2011) J Phys Chem A 115:4558–4562

    Article  CAS  Google Scholar 

  34. Liang G, Wu Q, Yang J (2011) J Phys Chem A 115:8302–8309

    Article  CAS  Google Scholar 

  35. Yang J, Kang Y, Wang X, Bai X (2013) J Mol Model 19:5199–5211

    Article  CAS  Google Scholar 

  36. Hou L, Yang J, Ning H (2014) J Mol Model 20:2443, 1-12

    Article  Google Scholar 

  37. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  38. Curtiss LA, Redfern PC, Rassolov V, Kedziora G, Pople JA (2001) J Chem Phys 114:9287–9295

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09 revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  40. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  41. Elbel S, Dieck HT, Demuth R (1982) J Fluor Chem 19:349–362

    Article  CAS  Google Scholar 

  42. Hunsicker S, Jones RO, Ganteför G (1995) J Chem Phys 102:5917–5936

    Article  CAS  Google Scholar 

  43. Hohl D, Jones RO, Car R, Parrinello M (1988) 89: 6823–6835

  44. Zhai H-J, Wang L-S, Kuznetsov AE, Boldyrev AI (2002) J Phys Chem A 106:5600–5606

    Article  CAS  Google Scholar 

  45. Chen MD, Liu ML, Zheng LS, Zhang QE, Au CT (2001) Chem Phys Lett 350:119–127

    Article  CAS  Google Scholar 

  46. Wong MW, Steudel R (2003) Chem Phys Lett 379:162–169

    Article  CAS  Google Scholar 

  47. Walter CW, Gibson ND, Field RL, Snedden AP, Shapiro JZ, Janczak CM, Hanstorp D (2009) Phys Rev A 80:014501, 1-4

    Article  Google Scholar 

  48. Kelly RL (1987) J Phys Chem Ref Data 16: Suppl 1

  49. Zimmerman JA, Bach SBH, Watson CH, Eyler JR (1991) J Phys Chem 95:98–104

    Article  CAS  Google Scholar 

  50. Bennett SL, Margrave JL, Franklin JL, Hudson JE (1973) J Chem Phys 59:5814–5819

    Article  CAS  Google Scholar 

  51. Wells JE, Yukich JN (2009) Phys Rev A 80:055403, 1–4

    Article  Google Scholar 

  52. Moran S, Ellison GB (1988) J Phys Chem 92:1794–1803

    Article  CAS  Google Scholar 

  53. Berkowitz J, Lifshitz C (1968) J Chem Phys 48:4346–4350

    Article  CAS  Google Scholar 

  54. Budininkas P, Edwards RK, Wahlbeck PG (1968) J Chem Phys 48:2859–2866

    Article  CAS  Google Scholar 

  55. Deakyne CA, Li L, Zheng WC, Xu DY, Liebman JF (2003) Int J Quantum Chem 95:713–718

    Article  CAS  Google Scholar 

  56. Deakyne CA, Li L, Zheng WC, Xu DY, Liebman JF (2002) J Chem Thermodyn 34:185–192

    Article  CAS  Google Scholar 

  57. Lee HM, Ge M, Sahu BR, Tarakeshwar P, Kim KS (2003) J Phys Chem B 107:9994–10005

    Article  CAS  Google Scholar 

  58. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  59. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  60. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Grant (No, 21263010) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jucai Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Yang, J. Study on electronic structures and properties of neutral and charged arsenic sulfides [As n S3 (−1,0,+1), n =1–6] with the Gaussian-3 scheme. J Mol Model 21, 303 (2015). https://doi.org/10.1007/s00894-015-2851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2851-6

Keywords

Navigation