Skip to main content
Log in

Competition and interplay between the lithium bonding and hydrogen bonding: R3C···HY···LiY and R3C···LiY···HY triads as a working model (R=H, CH3; Y=CN, NC)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

UMP2 calculations with aug-cc-pVDZ basis set were used to analyze intermolecular interactions in R3C···HY···LiY and R3C···LiY···HY triads (R=H, CH3; Y=CN, NC), which are connected via lithium and hydrogen bonds. To better understand the properties of these systems, the corresponding dyads were also studied. Molecular geometries and binding energies of dyads, and triads were investigated at the UMP2/aug-cc-pVDZ computational level. Particular attention was paid to parameters such as cooperative energies, and many-body interaction energies. All studied complexes, with the simultaneous presence of a lithium bond and a hydrogen bond, showed cooperativity with energy values ranging between −1.71 and −9.03 kJ mol−1. The electronic properties of the complexes were analyzed using parameters derived from atoms in molecules (AIM) methodology. Energy decomposition analysis revealed that the electrostatic interactions are the major source of the attraction in the title complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143

    Article  Google Scholar 

  2. Latajka Z, Scheiner S (1984) J Chem Phys 81:4014

    Article  CAS  Google Scholar 

  3. Szczesniak MM, Hobza P, Latajka Z, Ratajczak H, Skowronek K (1984) J Phys Chem 88:5923

    Article  CAS  Google Scholar 

  4. Latajka Z, Ratajczak H, Morokuma K, Orville-Thomas WJ (1986) J Mol Struct 146:263

    Article  CAS  Google Scholar 

  5. Bouteiller Y, Latajka Z, Ratajczak H, Scheiner S (1991) J Chem Phys 94:2956

    Article  CAS  Google Scholar 

  6. Salai Cheettu Ammala S, Venuvanalingam P (1998) J Chem Phys 109:9820

    Article  Google Scholar 

  7. Scheiner S, Sapse EAM, Schleyer PR (1995) Recent studies in lithium chemistry. A theoretical and experimental overview. Wiley, New York

    Google Scholar 

  8. Shigorin DN (1959) Spectrochim Acta 14:198

    Article  CAS  Google Scholar 

  9. Kollman PA, Liebman JF, Allen LC (1970) J Am Chem Soc 92:1142

    Article  CAS  Google Scholar 

  10. Ault BS, Pimentel GC (1975) J Phys Chem 79:621

    Article  CAS  Google Scholar 

  11. Li Y, Wu D, Li ZR, Chen W, Sun CC (2006) J Chem Phys 125:084317

    Article  Google Scholar 

  12. Feng Y, Liu L, Wang JT, Li XS, Guo QX (2004) Chem Commun 1:88

    Article  Google Scholar 

  13. Li QZ, Wang YF, Li WZ, Cheng JB, Gong BA, Sun JZ (2009) Phys Chem Chem Phys 11:2402

    Article  CAS  Google Scholar 

  14. Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2003) Chem Phys Lett 375:91

    Article  CAS  Google Scholar 

  15. Tachikawa H (1998) J Phys Chem A 102:7065

    Article  CAS  Google Scholar 

  16. Igarashi M, Ishibashi T, Tachikawa H (2002) J Mol Struct (THEOCHEM) 594:61

    Article  CAS  Google Scholar 

  17. Chen Y, Tshkuikow-Roux E, Rauk A (1991) J Phys Chem 95:9832

    Article  CAS  Google Scholar 

  18. Solimannejad M, Alikhani ME (2005) Chem Phys Lett 406:351

    Article  CAS  Google Scholar 

  19. Misochko EY, Benderskii VA, Goldschleger AU, Akimov AV, Schestakov AF (1995) J Am Chem Soc 117:11997

    Article  CAS  Google Scholar 

  20. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  21. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  22. AIMAll (2008) (Version 08.11.29), TK Gristmill Software (http://aim.tkgristmill.com)

  23. Su P, Li H (2009) J Chem Phys 131:014102

    Article  Google Scholar 

  24. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki Matsunaga S, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA, Koseki Matsunaga S, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  25. Lucas X, Estarellas C, Escudero D, Frontera A, Quiñonero D, Deyà PM (2009) Chem Phys Chem 10:2256

    Article  CAS  Google Scholar 

  26. Gong B, Jing B, Li Q, Liu Z, Li W, Cheng J, Zheng Q, Sun J (2010) Theor Chem Acc 127:303

    Article  CAS  Google Scholar 

  27. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679

    Article  CAS  Google Scholar 

  28. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659

    Article  CAS  Google Scholar 

  30. White JC, Davidson ER (1990) J Chem Phys 93:8029

    Article  CAS  Google Scholar 

  31. Valiron P, Mayer I (1997) Chem Phys Lett 275:46

    Article  CAS  Google Scholar 

  32. Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544

    Article  CAS  Google Scholar 

  33. Solimannejad M, Ghafari S, Esrafili MD (2013) Chem Phys Lett 577:6

    Article  CAS  Google Scholar 

  34. Cybulski H, Sadlej J (2008) J Chem Theory Comput 4:892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Solimannejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solimannejad, M., Rezaei, Z. & Esrafili, M.D. Competition and interplay between the lithium bonding and hydrogen bonding: R3C···HY···LiY and R3C···LiY···HY triads as a working model (R=H, CH3; Y=CN, NC). J Mol Model 19, 5031–5035 (2013). https://doi.org/10.1007/s00894-013-2006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2006-6

Keywords

Navigation