Skip to main content
Log in

Gas phase acidities of N-substituted amine-boranes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Complexation energies and acidities of 19 primary, secondary and tertiary amine-boranes were investigated using MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) methods. Gas phase acidities for free amines were also calculated. Acidity values for studied complexes range from 327.3 to 349.1 kcal mol−1 and the most acidic are the ones with direct connection between deprotonation center and a π-system. Results obtained by both computational methods are in good agreement with each other and with known experimental data. Addition of BH3 increases the acidity of amines by 30 to 50 kcal mol−1. This enhancement effect was compared to the respective effect witnessed in phosphine-boranes and traced back to changes of charge delocalization on nitrogen. A question about the structural stability of several deprotonated amine-borane anions in the gas phase was also raised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gay-Lussac JL, Thenard JA (1809) Sur l’acide fluorique. Mem Phys Chim Soc D’Arcueil 69:204–220

    Google Scholar 

  2. Gay-Lussac JL, Thenard JA (1809) Des propriétés de l’acide fluorique et surtout de son action sur le métal de la potasse. Mem Phys Chim Soc D’Arcueil 2:317–331

    Google Scholar 

  3. Staubitz A, Robertson APM, Sloan ME, Manners I (2010) Amine- and phosphine-borane adducts: new interest in old molecules. Chem Rev 110:4023–4078

    Article  CAS  Google Scholar 

  4. Staubitz A, Robertson APM, Manners I (2010) Ammonia-borane and related compounds as hydrogen donors. Chem Rev 110:4079–4124

    Article  CAS  Google Scholar 

  5. Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) Study of the N−H···H−B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction. J Am Chem Soc 121:6337–6343

    Article  CAS  Google Scholar 

  6. Richardson TB, de Gala S, Crabtree RH, Siegbahn PEM (1995) Unconventional hydrogen bonds: intermolecular B-H-*H-N interactions. J Am Chem Soc 117:12875–12876

    Article  CAS  Google Scholar 

  7. Merino G, Bakhmutov VI, Vela A (2002) Do cooperative proton-hydride interactions explain the gas-solid structural difference of BH3NH3? J Phys Chem A 106:8491–8494

    Article  CAS  Google Scholar 

  8. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B (2008) Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. J Am Chem Soc 130:14117–14119

    Article  CAS  Google Scholar 

  9. Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B (2009) Experimental and theoretical treatment of hydrogen splitting and storage in boron–nitrogen systems. J Organomet Chem 694:2654–2660

    Article  CAS  Google Scholar 

  10. Welch GC, Juan RRS, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  CAS  Google Scholar 

  11. Stephan DW, Erker G (2010) Frustrated Lewis Pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  12. Skancke A, Skancke PN (1996) Density functional theory and perturbation calculations on some Lewis acid–base complexes. A systematic study of substitution effects. J Phys Chem 100:15079–15082

    Article  CAS  Google Scholar 

  13. Anane H, Houssame S, Guerraze A, Guermoune A, Boutalib A, Jarid A, Nebot-Gil I, Tomás F (2008) A G2(MP2) theoretical study of substituent effects on H3BNHnCl3-n (n = 3–0) donor-acceptor complexes. Cent Eur J Chem 6:400–403

    Article  CAS  Google Scholar 

  14. Patwari GN (2005) Proton affinities of borane—amines: consequences on dihydrogen bonding. J Phys Chem A 109:2035–2038

    Article  CAS  Google Scholar 

  15. Gaffoor F, Ford TA (2008) The vibrational spectra of the boron halides and their molecular complexes. Spectrochimica Acta Part A 71:550–558

    Article  Google Scholar 

  16. Anane H, Boutalib A, Nebot-Gil I, Tomás F (1998) G2(MP2) study of the substituent effects in the H3BXHnMe3-n (X = N, P; n = 0–3) donor–acceptor complexes. Chem Phys Lett 287:575–578

    Article  Google Scholar 

  17. Anane H, Jarid A, Boutalib A, Nebot-Gil I, Tomás F (1998) Substituent effect on ammonia–borane donor–acceptor complexes: a G2(MP2) molecular orbital study. J Mol Struct (Theochem) 455:51–57

    Article  CAS  Google Scholar 

  18. Ren J, Workman DB, Squires RR (1998) Gas-phase negative ion chemistry of Lewis acid–base complexes. J Am Chem Soc 120:10511–10522

    Article  CAS  Google Scholar 

  19. Martín-Sómer A, Lamsabhi AM, Yáñez M, Dávalos JZ, González J, Ramos R, Guillemin JC (2012) Can an amine be a stronger acid than a carboxylic acid? The surprisingly high acidity of amine-borane complexes. Chem Eur J 18:15699–15705

    Article  Google Scholar 

  20. Hurtado M, Yánez M, Herrero R, Guerrero A, Dávalos JZ, Abboud JLM, Khater B, Guillemin JC (2009) The ever-surprising chemistry of boron: enhanced acidity of phosphine⋅boranes. Chem Eur J 15:4622–4629

    Article  CAS  Google Scholar 

  21. Balázs N, Khater B, Guillemin JC, Veszprémi T (2010) Differences between amine- and phosphine-boranes: synthesis, photoelectron spectroscopy, and quantum chemical study of the cyclopropylic derivatives. Inorg Chem 49:4854–4864

    Article  Google Scholar 

  22. Abboud JLM, Németh B, Guillemin JC, Burk P, Adamson A, Nerut ER (2012) Dihydrogen generation from amine/boranes: synthesis, FT-ICR, and computational studies. Chem Eur J 18:3981–3991

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al. (2009) Gaussian 09. Gaussian, Inc, Wallingford

    Google Scholar 

  24. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  25. Saebø S, Almlöf J (1989) Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem Phys Lett 154:83–89

    Article  Google Scholar 

  26. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  27. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289

    Article  CAS  Google Scholar 

  28. Head-Gordon M, Head-Gordon T (1994) Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem Phys Lett 220:122–128

    Article  CAS  Google Scholar 

  29. Becke AD (1993) Density–functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  31. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self–consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  32. Binning RC Jr, Curtiss LA (1990) Compact contracted basis sets for third-row atoms: Ga–Kr. J Comp Chem 11:1206–1216

    Article  CAS  Google Scholar 

  33. Frisch MJ, Pople JA, Binkley JS (1984) Self–consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  34. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  35. Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J Chem Phys 105:11024–11031

    Article  CAS  Google Scholar 

  36. Sordo JA (2001) On the use of the boys-bernardi function counterpoise procedure to correct barrier heights for basis set superposition error. J Mol Struct (Theochem) 537:245–251

    Article  CAS  Google Scholar 

  37. Webbook.nist.gov NIST Chemistry Webbook. Standard Reference Database Number 69. Linstrom PJ, Mallard WG (eds), Release June 2005, National Institute of Standards and Technology, (2012) http://webbook.nist.gov

  38. Bachrach SM (2007) Population analysis and electron densities from quantum mechanics. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. John Wiley & Sons, Inc, Hoboken. doi:10.1002/9780470125823.ch3

    Google Scholar 

  39. Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245–8252

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Estonian Science Foundation (Grant No. 8809) and the Estonian Ministry of Education and Research Targeted Financing project No. SF0180120s08. It was also conducted in part under an Integrated Exchange Program ‘PARROT’ co-financed by the Estonian Science Foundation and the French Ministry of Foreign Affairs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiko Adamson or Peeter Burk.

Electronic supplementary material

Calculation results for all species including geometries, electronic energies, enthalpies and free energies at default conditions. This material is available free of charge.

ESM 1

(PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamson, A., Guillemin, JC. & Burk, P. Gas phase acidities of N-substituted amine-boranes. J Mol Model 19, 5089–5095 (2013). https://doi.org/10.1007/s00894-013-2001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2001-y

Keywords

Navigation