Skip to main content
Log in

Discovery of σ-hole interactions involving ylides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The positive electrostatic potentials (σ-hole) have been found in ylides CH2XH3 (X = P, As, Sb) and CH2YH2 (Y = S, Se, Te), on the outer surfaces of group VA and VIA atoms, approximately along the extensions of the C–X and C–Y bonds, respectively. These electrostatic potentials suggest that the above ylides can interact with nucleophiles to form weak, directional noncovalent interactions similar to halogen bonding interactions. MP2 calculations have confirmed the formation of CH2XH3···HM complexes (X = P, As, Sb; M = BeH, ZnH, MgH, Li, Na). The interaction energies, interaction distances, topological properties (electron density and its Laplacian), and energy properties (kinetic electron energy density and potential electron energy density) at the X(1)···H(10) bond critical points are all correlated with the most negative electrostatic potential value of HM, indicating that electrostatic interactions play an important role in these weak X···H interactions. Similar to the halogen bonding interactions, weak interactions involving ylides may be significant in several areas such as organic synthesis, crystal engineering, and design of new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buckingham AD, Fowler PW, Hutson JM (1988) Chem Rev 88:963–988

    Article  CAS  Google Scholar 

  2. Chałasiński G, Szczȩśniak MM (2000) Chem Rev 100:4227–4252

    Article  Google Scholar 

  3. Wormer PES, van der Avoird A (2000) Chem Rev 100:4109–4144

    Article  CAS  Google Scholar 

  4. Philp D, Stoddart JF (1996) Angew Chem Int Ed Engl 35:1154–1196

    Article  Google Scholar 

  5. Klos J, Szczȩśniak MM, Chałasiński G (2004) Int Rev Phys Chem 23:541–571

    Article  CAS  Google Scholar 

  6. Saalfrank RW, Maid H, Scheurer A (2008) Angew Chem Int Ed Engl 47:8794–8824

    Article  CAS  Google Scholar 

  7. Llanes-Pallas A, Palma CA, Piot L et al. (2009) J Am Chem Soc 131:509–520

    Article  CAS  Google Scholar 

  8. Clark T, Hennemann M, Murray JS et al. (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS (2013) Chemphyschem 14:278–294

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  11. Auffinger P, Hays FA, Westhof E et al. (2004) Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  12. Politzer P, Lane P, Concha MC et al. (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  13. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  14. Murray JS, Concha MC, Lane P et al. (2008) J Mol Model 14:699–704

    Article  CAS  Google Scholar 

  15. Solimannejad M, Ramezani V, Trujillo C et al. (2012) J Phys Chem A 116:5199–5206

    Article  CAS  Google Scholar 

  16. Murray JS, Lane P, Clark T et al. (2012) J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  17. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  18. Clark T, Murray JS, Lane P et al. (2008) J Mol Model 14:689–697

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  20. Murray JS, Politzer P (1998) J Mol Struct (THEOCHEM) 425:107–114

    Article  CAS  Google Scholar 

  21. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  22. Politzer P, Murray JS (2001) Fluid Phase Equilib 185:129–137

    Article  CAS  Google Scholar 

  23. Hagelin H, Murray JS, Politzer P et al. (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  24. Zeng Y, Zhang X, Li X et al. (2011) Chemphyschem 12:1080–1087

    Article  CAS  Google Scholar 

  25. Zeng Y, Zhu M, Li X et al. (2012) J Comput Chem 33:1321–1327

    Article  CAS  Google Scholar 

  26. Johnson AW (1966) Ylid chemistry. Academic Press, New York

    Google Scholar 

  27. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Springer, Berlin

    Google Scholar 

  28. Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry. Reinhold, New York

    Google Scholar 

  29. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  30. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  31. Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  32. Murray JS, Politzer P (2009) Croat Chem Acta 82:267–275

    CAS  Google Scholar 

  33. Politzer P, Murray JS (2002) Theor Chim Acta 108:134–142

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS (1991) Reviews in computational chemistry. VCH, New York

    Google Scholar 

  35. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  36. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  37. Peterson KA, Figgen D, Goll E et al. (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  38. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03. Revision D.01 ed. Gaussian, Inc., Wallingford

    Google Scholar 

  40. Bulat FA, Toro-Labbe A, Brinck T et al. (2010) J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  41. Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  42. Popelier PLA (2000) Atoms in molecules: an introduction. Pearson, Essex

    Google Scholar 

  43. Keith TA (2012) AIMALL. version 13.02.26 ed. USA

  44. Murray JS, Lane P, Clark T et al. (2007) J Mol Model 13:1033–1038

    Article  CAS  Google Scholar 

  45. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665

    Article  CAS  Google Scholar 

  46. Zeng Y, Li X, Zhang X et al. (2011) J Mol Model 17:2907–2918

    Article  CAS  Google Scholar 

  47. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  48. Lapointe SM, Farrag S, Bohorquez HJ et al. (2009) J Phys Chem B 113:10957–10964

    Article  CAS  Google Scholar 

  49. Grabowski SJ (2011) Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  50. Zeng Y, Zhang X, Li X et al. (2010) Int J Quantum Chem 11:3725–3740

  51. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  52. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks for International Science Editing to edit this paper. This project was supported by the National Natural Science Foundation of China (Contract Nos.: 21371045, 21102033, 21171047, 21073051), the Natural Science Foundation of Hebei Province (Contract No.: B2011205058), and the Education Department Foundation of Hebei Province (ZH2012106, ZD2010126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanli Zeng or Lingpeng Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Zeng, Y., Zhang, X. et al. Discovery of σ-hole interactions involving ylides. J Mol Model 19, 4887–4895 (2013). https://doi.org/10.1007/s00894-013-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1992-8

Keywords

Navigation